
Creating a Role Playing Game with XNA Game Studio 3.0
Part 11

Creating a Textbox Control

To follow along with this tutorial you will have to have read the previous tutorials to understand much
of what it going on. You can find a list of tutorials here: XNA 3.0 Role Playing Game Tutorials You
will also find the latest version of the project on the web site on that page. If you want to follow along
and type in the code from this PDF as you go, you can find the previous project at this link: Eyes of the
Dragon - Version 10 You can download the graphics for the these tutorials at this link: Graphics.zip

Again, I did quite a bit of programming on Eyes of the Dragon, the name I have given to the game. To
start with I created a textbox control for use in the game. Then I created a simple pop up screen that had
a textbox control on it. I then change the character generator to use the new pop up screen for getting
the character's name instead of getting it from a list of names.

To get started, go a head and load the last version of the project. Before I go any farther you will want
to download the graphics from the graphics file listed above. You will want to add the textbox.png and
cursor.png files to the GUI subfolder in the Content folder.

To get started, you will want to add a new GameComponent to the CoreComponents folder called
Textbox. As I always do, I will give you the new code and then explain what I've done. This is the code
for the Textbox GameComponent.

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Audio;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.GamerServices;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Media;
using Microsoft.Xna.Framework.Net;
using Microsoft.Xna.Framework.Storage;

namespace New2DRPG.CoreComponents
{
 /// <summary>
 /// This is a game component that implements IUpdateable.
 /// </summary>
 public class Textbox : Microsoft.Xna.Framework.DrawableGameComponent
 {
 Texture2D textboxTexture;
 Texture2D cursor;

 SpriteFont spriteFont;
 SpriteBatch spriteBatch;
 ContentManager Content;

http://www.jtmbooks.com/rpgtutorials/graphics.zip
http://www.jtmbooks.com/rpgtutorials/New2DRPG10.zip
http://www.jtmbooks.com/rpgtutorials/New2DRPG10.zip
http://www.jtmbooks.com/rpgtutorials

 string text;

 Keys[] keysToCheck = new Keys[] {
 Keys.A, Keys.B, Keys.C, Keys.D, Keys.E,
 Keys.F, Keys.G, Keys.H, Keys.I, Keys.J,
 Keys.K, Keys.L, Keys.M, Keys.N, Keys.O,
 Keys.P, Keys.Q, Keys.R, Keys.S, Keys.T,
 Keys.U, Keys.V, Keys.W, Keys.X, Keys.Y,
 Keys.Z, Keys.Back, Keys.Space };

 Vector2 cursorPosition;
 Vector2 textPosition;
 Vector2 textboxPosition;

 TimeSpan blinkTime;
 bool blink;

 KeyboardState currentKeyboardState;
 KeyboardState lastKeyboardState;

 public Textbox(Game game, SpriteFont spriteFont)
 : base(game)
 {
 spriteBatch =
 (SpriteBatch)Game.Services.GetService(typeof(SpriteBatch));

 Content =
 (ContentManager)Game.Services.GetService(typeof(ContentManager));

 this.spriteFont = spriteFont;

 textboxTexture = Content.Load<Texture2D>(@"GUI\textbox");
 cursor = Content.Load<Texture2D>(@"GUI\cursor");

 textboxPosition = new Vector2();
 cursorPosition = new Vector2(
 textboxPosition.X + 5,
 textboxPosition.Y + 5);
 textPosition = new Vector2(
 textboxPosition.X + 5,
 textboxPosition.Y + 5);
 blink = false;
 text = "";
 }

 public string Text
 {
 get { return text; }
 set { text = value; }
 }

 public Vector2 Position
 {
 get { return textboxPosition; }
 set
 {
 textboxPosition = value;
 SetTextPosition();
 }

 }

 private void SetTextPosition()
 {
 cursorPosition = new Vector2(
 textboxPosition.X + 5,
 textboxPosition.Y + 5);
 textPosition = new Vector2(
 textboxPosition.X + 5,
 textboxPosition.Y + 5);
 }

 public int Height
 {
 get { return textboxTexture.Height; }
 }

 public int Width
 {
 get { return textboxTexture.Width; }
 }

 public override void Initialize()
 {
 base.Initialize();
 }

 public override void Update(GameTime gameTime)
 {
 currentKeyboardState = Keyboard.GetState();
 blinkTime += gameTime.ElapsedGameTime;
 if (blinkTime > TimeSpan.FromMilliseconds(500))
 {
 blink = !blink;
 blinkTime -= TimeSpan.FromMilliseconds(500);
 }
 foreach (Keys key in keysToCheck)
 {
 if (CheckKey(key))
 {
 AddKeyToText(key);
 break;
 }
 }
 base.Update(gameTime);
 Vector2 textSize = spriteFont.MeasureString(text);
 cursorPosition.X = textPosition.X + textSize.X;
 lastKeyboardState = currentKeyboardState;
 }

 private void AddKeyToText(Keys key)
 {
 string newChar = "";

 if (text.Length >= 16 && key != Keys.Back)
 return;

 switch (key)
 {

 case Keys.A:
 newChar += "a";
 break;
 case Keys.B:
 newChar += "b";
 break;
 case Keys.C:
 newChar += "c";
 break;
 case Keys.D:
 newChar += "d";
 break;
 case Keys.E:
 newChar += "e";
 break;
 case Keys.F:
 newChar += "f";
 break;
 case Keys.G:
 newChar += "g";
 break;
 case Keys.H:
 newChar += "h";
 break;
 case Keys.I:
 newChar += "i";
 break;
 case Keys.J:
 newChar += "j";
 break;
 case Keys.K:
 newChar += "k";
 break;
 case Keys.L:
 newChar += "l";
 break;
 case Keys.M:
 newChar += "m";
 break;
 case Keys.N:
 newChar += "n";
 break;
 case Keys.O:
 newChar += "o";
 break;
 case Keys.P:
 newChar += "p";
 break;
 case Keys.Q:
 newChar += "q";
 break;
 case Keys.R:
 newChar += "r";
 break;
 case Keys.S:
 newChar += "s";
 break;
 case Keys.T:
 newChar += "t";

 break;
 case Keys.U:
 newChar += "u";
 break;
 case Keys.V:
 newChar += "v";
 break;
 case Keys.W:
 newChar += "w";
 break;
 case Keys.X:
 newChar += "x";
 break;
 case Keys.Y:
 newChar += "y";
 break;
 case Keys.Z:
 newChar += "z";
 break;
 case Keys.Space:
 newChar += " ";
 break;
 case Keys.Back:
 if (text.Length != 0)
 text = text.Remove(text.Length - 1);
 return;
 }
 if (currentKeyboardState.IsKeyDown(Keys.RightShift) ||
 currentKeyboardState.IsKeyDown(Keys.LeftShift))
 {
 newChar = newChar.ToUpper();
 }
 text += newChar;
 }

 private bool CheckKey(Keys theKey)
 {
 return lastKeyboardState.IsKeyDown(theKey) &&
 currentKeyboardState.IsKeyUp(theKey);
 }

 public override void Draw(GameTime gameTime)
 {
 spriteBatch.Draw(textboxTexture, textboxPosition, Color.White);

 if (!blink)
 spriteBatch.Draw(cursor, cursorPosition, Color.White);

 spriteBatch.DrawString(spriteFont, text, textPosition, Color.Black);

 base.Draw(gameTime);
 }

 public void Show()
 {
 Enabled = true;
 Visible = true;
 }

 public void Hide()
 {
 Enabled = false;
 Visible = false;
 }
 }
}

Since this is a visual component, I had to derive it from DrawableGameComponent instead of
GameComponent. I used two Texture2D's for this component. One for the textbox and one for the
cursor. I also needed variables for the SpriteBatch object, a SpriteFont and a ContentManager. The
ContentManager wasn't exactly necessary but instead of passing in a lot of parameters to the
constuctor I decided to load then in directly. There is also a variable for the text in the textbox.

The next variable might seem a little strange. To check to see if a key has been pressed, I created an
array of all the keys that I wanted to check. That way, I could use a foreach loop in the Update method
to go through the list of keys and see if one of the ones I'm interested in has been pressed. You will see
this in action a little later on.

There are three Vector2's in this component. One for the position of the textbox on the screen. There is
another for the position of the text in the textbox. The last one is for the position of the cursor.

The purpose of the next two variables might be confusing. The one is a TimeSpan variable. I will use
this variable to toggle the bool that will tell if the cursor is visible or not. It will effectively make the
cursor blink.

Finally there are two more variables. They will be familiar to you. They will hold the current and the
last states of the keyboard. They will be used in the familiar CheckKey method to see if a key has been
pressed and released. I have explained before why I used this approach for detecting a single key press.
If you do it the other way around and say the player has just hit the enter key to move from one menu
to another. The key will still be in the same state when you move to the next menu. Doing it my way
keeps this from happening.

The constructor for the component takes two parameters. The Game object and a SpriteFont for the
component. Like most other components the constructor gets the SpriteBatch and ContentManager
objects that were added to the list of services in the Game1 class. The other things the constructor does
are set the SpriteFont, load in the two textures that are needed for the textbox, initialize the Vector2's
set blink to false, which will make the cursor not visible to start, and the text to the empty string.

There are a few public properties for this component. There are get and set properties for the text of the
textbox and the position of the textbox on the screen. In the set part for the property of the textbox, I
call a method SetTextPosition. What this method does is set the position of the text in the textbox as
well as the position of the cursor. In the new screen where I will need to position the textbox I needed
to be able to get the height and the width of the textbox so there are get properties for that as well.

Next there is the Update method. The first thing the Update method does is get the current state of the
keyboard. The next part may be new to you. This is the part where I control if the cursor is visible or
not. The first thing I did was add the elapsed game time to the TimeSpan object blinkTime. If you are
unfamiliar with that, basically what this does is get how much time has elapsed. In the if statement, I
check to see if the time that has elapsed is greater then 500 milliseconds as half a second is a good

blink rate for the cursor. What happens if this is true is I negate the value of blink. Since blink is a
boolean this will toggle it between true and false. Then I subtract 500 millisecond from the elapsed
time, setting it back to it's previous value.

Then, I use a foreach loop to loop through all of the keys I'm interested in checking to see if it has been
checked using the CheckKey method. If I find a key has been pressed I send it to a method called
AddKeyToText and I exit the loop. After updating the text I get the length of the text and set the
position of the cursor to the end of the text. When you are checking single keypresses the last thing you
should do in the Update method is set the last state of the keyboard to the current state of the keyboard.

Next is the AddKeyToText method. It takes as a parameter the key press that was detected. In this
method is a string variable that will hold the new text. If the length of the text is greater than or equal to
16, the maximum length of the text, and the key isn't the back space key, the key is ignored and the
method returns. Then there is one huge switch that has each of the keys and what will be added to the
text if the corrosponding key has been pressed. For example, if Key.A was pressed the new text is set to
a. The interesting case is Keys.Back. What happens in this case is if there is text in the text for the text
box it removes the last character. After the switch statement, if either the left or right shift key is
pressed I call the ToUpper method to set the new character to an upper case character. Then I add the
new text to the old text.

There is a CheckKey method in this class. It is the same as the other CheckKey methods and I
explained it above so I will not go into any more details.

Next there is the Draw method. When the Draw method draws, in order, is the texture for the textbox,
the cursor if it is visible and the text in the textbox. There is an if statement to see if the cursor is visible
or not.

Like all of the other DrawableGameComonpents I've created, there are methods to show and hide the
component. Since I didn't see the need to inherit from this one I didn't make them virtual so they could
be overriden later on.

The next thing I did was create a new pop up screen called InputScreen. This screen will house the
textbox control, a one button menu to allow the player to accept what they have typed as well as an
image for the screen. Since this is a pop up screen it will be drawn in the center of the screen. This
screen is basically the same as the PopUpScreen with only a few minor differences. (I actually just
copied the PopUpScreen code and pasted it here to make this class.) This is the code for the
InputScreen.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using New2DRPG.CoreComponents;

namespace New2DRPG
{
 class InputScreen : GameScreen
 {
 ButtonMenu menu;

 Texture2D image;
 SpriteBatch spriteBatch;
 Rectangle imageRectangle;
 Textbox textbox;

 public InputScreen(Game game, SpriteFont spriteFont, Texture2D image,
 Texture2D buttonImage)
 : base(game)
 {
 this.image = image;
 spriteBatch =
 (SpriteBatch)game.Services.GetService(typeof(SpriteBatch));
 imageRectangle = new Rectangle();
 imageRectangle.X = (game.Window.ClientBounds.Width - image.Width) / 2;
 imageRectangle.Y = (game.Window.ClientBounds.Height -

image.Height) / 2;
 imageRectangle.Width = image.Width;
 imageRectangle.Height = image.Height;

 string[] items = { "OK" };
 menu = new ButtonMenu(game, spriteFont, buttonImage);
 menu.SetMenuItems(items);
 Components.Add(menu);
 textbox = new Textbox(game, spriteFont);
 Components.Add(textbox);
 }

 public int SelectedIndex
 {
 get { return menu.SelectedIndex; }
 }

 public string Text
 {
 get { return textbox.Text; }
 }

 public void SetMenuItems(string[] items)
 {
 menu.SetMenuItems(items);
 }

 public override void Draw(GameTime gameTime)
 {
 spriteBatch.Draw(image, imageRectangle, Color.White);
 base.Draw(gameTime);
 }

 public override void Show()
 {
 base.Show();
 menu.Position = new Vector2((imageRectangle.Width -
 menu.Width) / 2 + imageRectangle.X,
 imageRectangle.Height - menu.Height - 10 +
 imageRectangle.Y);
 textbox.Position = new Vector2((imageRectangle.Width -
 textbox.Width) / 2 + imageRectangle.X,
 menu.Position.Y - 10 - textbox.Height);
 }

 }
}

As you can see, you need three using statements for this class. One for the XNA framework, another
for the Graphics name space in the framework as well as the CoreComponents of the game. This class
also inherits from GameScreen. There are variables in this class for the menu, the textbox, the
SpriteBatch object, the image and the rectangle where the image will be drawn.

The constructor for this class takes the Game object, a SpriteFont, the texture for the image and the
texture for the button. The constructor sets the image, gets the SpriteBatch object that was registered
and then creates the rectangle where image will be drawn on the screen. It then creates a single entry
button menu to allow the player to exit the screen and adds it to the list of components. It then creates a
textbox and adds it to the list of components as well.

There are two get properties for this screen. There is one to get the selected menu item, which will
always be 0, but later I do want to add in the ability to have a cancel button so I've kept this for now.
There is also a property to get the text from the textbox. I also kept the method to be able to set the
menu items for the screen. I thought it might come in handy later on.

The Draw method is exactly the same as the Draw method from the PopUpScreen. It just draws the
image for the screen and then call base.Draw.

Another thing that is different from the PopUpScreen is the Show method. In the Show method as
well as setting the position of the menu I also set the position of the textbox in the screen. I centered the
textbox horizontally, using the Width property of the textbox. Then I positioned it above the menu
using the height of the textbox and the same spacing I used for the menu.

To use this new screen, I did have to make some changes to the CreatePCScreen. I will give you the
code for the entire class. I will go over the major changes. This is the new class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using New2DRPG.CoreComponents;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Content;

namespace New2DRPG
{
 class CreatePCScreen : GameScreen
 {
 ButtonMenu buttonMenu;

 string name = "Evander";
 bool gender = false;
 int difficultyLevel = 1;
 int className = 0;
 Texture2D buttonImage;
 int screenWidth;
 int screenHeight;

 string[] classNames = {
 "Fighter",
 "Wizard",
 "Thief",
 "Priest" };

 string[] menuItems = {
 "FORSEE HERO'S NAME",
 "FORSEE HERO'S GENDER",
 "FORSEE HERO'S CLASS",
 "FORSEE DIFFICULTY LEVEL",
 "BACK TO MENU",
 "BEGIN THE ADVENTURE" };

 string[] difficultyLevels = {
 "Easy",
 "Normal",
 "Hard",
 "Ultimate" };

 SpriteFont spriteFont;
 SpriteBatch spriteBatch;
 ContentManager Content;

 public CreatePCScreen(Game game, SpriteFont spriteFont)
 : base(game)
 {
 spriteBatch =
 (SpriteBatch)Game.Services.GetService(typeof(SpriteBatch));
 Content =
 (ContentManager)Game.Services.GetService(typeof(ContentManager));
 this.spriteFont = spriteFont;
 Components.Add(new BackgroundComponent(game,
 Content.Load<Texture2D>("createpcscreen")));
 buttonImage = Content.Load<Texture2D>(@"GUI\buttonbackground");
 buttonMenu = new ButtonMenu(game, spriteFont, buttonImage);
 buttonMenu.SetMenuItems(menuItems);
 Components.Add(buttonMenu);

 screenWidth = Game.Window.ClientBounds.Width;
 screenHeight = Game.Window.ClientBounds.Height;
 }

 public bool Gender
 {
 get { return gender; }
 }

 public int SelectedIndex
 {
 get { return buttonMenu.SelectedIndex; }
 }

 public void ChangeName(string name)
 {
 this.name = name;
 }

 public void ChangeGender(bool gender)

 {
 this.gender = gender;
 }

 public void ChangeDifficulty(int difficultyLevel)
 {
 this.difficultyLevel = difficultyLevel;
 }

 public void ChangeClass(int className)
 {
 this.className = className;
 }

 public override void Show()
 {
 buttonMenu.Position = new Vector2((screenWidth -
 buttonMenu.Width) / 2,
 screenHeight - buttonMenu.Height - 10);
 base.Show();
 }

 public override void Draw(GameTime gameTime)
 {
 Vector2 position = new Vector2();
 string characterString;

 characterString = name + " the ";
 base.Draw(gameTime);
 characterString += classNames[className];
 Vector2 stringSize = spriteFont.MeasureString(characterString);
 position.X = (screenWidth - stringSize.X) / 2;
 position.Y = 280;

 spriteBatch.DrawString(spriteFont,
 characterString,
 position + Vector2.One * 3,
 Color.Black);

 spriteBatch.DrawString(spriteFont,
 characterString,
 position,
 Color.White);

 characterString = "Playing in " + difficultyLevels[difficultyLevel];
 characterString += " mode";
 stringSize = spriteFont.MeasureString(characterString);
 position.X = (screenWidth - stringSize.X) / 2;
 position.Y += spriteFont.LineSpacing;

 spriteBatch.DrawString(spriteFont,
 characterString,
 position + Vector2.One * 3,
 Color.Black);
 spriteBatch.DrawString(spriteFont,
 characterString,
 position,
 Color.White);
 }

 }
}
The first change is I got rid of the lists of female and male names. I made the name variable into a
string instead of an int. I also gave the name a default value of Evander. It was just a name I came up
with off the top of my head. The constructor didn't change at all. It is still the same. The ChangeName
method takes a string instead of an int. The only other change was in the Draw method. I was able to
get rid of the if statement and just use the name plus the " the " string.

To use the new classes I had to make a few changes to the Game1 class. The first change was changing
the screen for changing the name from PopUpScreen to InputScreen.

InputScreen nameInputScreen;

Then, I had to change the LoadContent method to reflect the changes made to this variable. All I did
was change the name of the variable and how it was constructed. This is the updated LoadContent
method.

 protected override void LoadContent()
 {
 spriteBatch = new SpriteBatch(GraphicsDevice);
 Services.AddService(typeof(SpriteBatch), spriteBatch);
 Services.AddService(typeof(ContentManager), Content);

 normalFont = Content.Load<SpriteFont>("normal");
 createPCScreen = new CreatePCScreen(this, normalFont);
 Components.Add(createPCScreen);

 background = Content.Load<Texture2D>("titlescreen");
 startScreen = new StartScreen(this,
 normalFont,
 background,
 Content.Load<Texture2D>(@"GUI\buttonbackground"));
 Components.Add(startScreen);

 background = Content.Load<Texture2D>("helpscreen");
 helpScreen = new HelpScreen(this,
 normalFont,
 background,
 Content.Load<Texture2D>(@"GUI\buttonbackground"));
 Components.Add(helpScreen);

 actionScreen = new ActionScreen(this, normalFont, "tileset1");
 Components.Add(actionScreen);
 actionScreen.Hide();

 background = Content.Load<Texture2D>(@"GUI\quitpopupbackground");
 quitPopUpScreen = new PopUpScreen(this,
 normalFont,
 background,
 Content.Load<Texture2D>(@"GUI\buttonbackgroundshort"));
 Components.Add(quitPopUpScreen);
 quitPopUpScreen.Hide();

 background = Content.Load<Texture2D>(@"GUI\maleorfemale");

 genderPopUpScreen = new PopUpScreen(this,

 normalFont,
 background,
 Content.Load<Texture2D>(@"GUI\buttonbackgroundshort"));
 string[] genderItems = new string[] { "Female", "Male" };
 genderPopUpScreen.SetMenuItems(genderItems);
 Components.Add(genderPopUpScreen);

 background = Content.Load<Texture2D>(@"GUI\chooseclass");

 classPopUpScreen = new PopUpScreen(this,
 normalFont,
 background,
 Content.Load<Texture2D>(@"GUI\buttonbackgroundshort"));
 string[] classItems = new string[] { "Fighter", "Wizard", "Thief",
"Priest" };
 classPopUpScreen.SetMenuItems(classItems);
 Components.Add(classPopUpScreen);

 background = Content.Load<Texture2D>(@"GUI\choosedifficulty");

 difficultyPopUpScreen = new PopUpScreen(this,
 normalFont,
 background,
 Content.Load<Texture2D>(@"GUI\buttonbackgroundshort"));
 string[] difficultyItems = new string[] { "Easy", "Normal", "Hard",
"Ultimate" };
 difficultyPopUpScreen.SetMenuItems(difficultyItems);
 Components.Add(difficultyPopUpScreen);

 background = Content.Load<Texture2D>(@"GUI\choosename");

 nameInputScreen = new InputScreen(this,
 normalFont,
 background,
 Content.Load<Texture2D>(@"GUI\buttonbackgroundshort"));
 Components.Add(nameInputScreen);

 startScreen.Show();
 helpScreen.Hide();
 createPCScreen.Hide();

 activeScreen = startScreen;
 }

I renamed the HandleNamePopUpScreenInput method to HandleNameInputScreenInput. Make
sure you change it in both the Update method and the actual method. (If you change it in the actual
method first, you can press SHIFT+ALT+F10 to change all occurances in your program.) This is the
code for the HandleNameInputScreenInput method.

 private void HandleNameInputScreenInput()
 {
 if (CheckKey(Keys.Enter))
 {
 createPCScreen.ChangeName(nameInputScreen.Text);
 activeScreen.Hide();
 activeScreen = createPCScreen;
 activeScreen.Show();
 }
 }

You will see that I removed checking for the space key to accept the screen. I will be doing that for all
of the handle input methods. The only difference in this method is that instead of passing an integer to
the ChangeName method, I pass in the string from the textbox.

Well, that is all for this tutorial. I will get to writing another one soon. Keep on coming back to the blog
or the web site and I will try and have new stuff on both of them.

