Creating a Role Playing Game with XNA Game Studio
Part 52
Implementing Manager Classes - Part 1

To follow along with this tutorial you will have to have read the previous tutorials to understand
much of what it going on. You can find a list of tutorials here: XINA Role Playing Game Tutorials. You
will also find the latest version of the project on the web site on that page. If you want to follow along
and type in the code from this PDF as you go, you can find the previous project at this link:
http://xnagpa.net/rpgtutorials/New2DRPGS51.zip. You can download the graphics from this link:

Graphics.zip

In this tutorial I will get started on adding in manager classes for dealing with game objects
rather than keeping track of them all in the main game class. The one thing that has been bugging me
for a while now is that all sprites in the game are XNA game components. This probably wasn't the best
idea in the world. As more and more objects are added to the game you may start to see performance
hits.

To get started, you will want to open the last version of the game. Make sure that your game
project is the start up project. If it isn't right click your game and select the Set As Start Up option. The
Sprite class is the base class of all other sprites in the game. The sprite class originally inherited from
the GameComponent class. I changed it so that it no longer inherits from any class. I made the
Update and Draw methods abstract methods. That means that any class that inherits from the Sprite
class must implement Update and Draw methods with the same signature. They both still take
GameTime parameters like before. This is the new code for the Sprite class.

using System;

using System.Collections.Generic;

using System.Ling;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Audio;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.GamerServices;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Media;
using Microsoft.Xna.Framework.Net;
using Microsoft.Xna.Framework.Storage;

namespace New2DRPG.CoreComponents

{

public abstract class Sprite

{

protected Texture2D texture;
protected Rectangle sourceRectangle;
protected Vector? position;

protected Vector2 velocity;
protected Vector?2 center;

http://xnagpa.net/rpgtutorials.html
http://www.jtmbooks.com/rpgtutorials/graphics.zip
http://xnagpa.net/rpgtutorials/New2DRPG51.zip

protected float scale;
protected float rotation;

protected SpriteRatch spriteBatch;

protected int width;
protected int height;

public Sprite (Game game,

{
spriteBatch =

Texture?2D texture)

(SpriteBatch)game.Services.GetService (typeof (SpriteBatch));

this.texture = texture;
width = texture.Width;

height = texture.Height;
position = Vector2.Zero;
velocity = Vector2.Zero;

center = new Vector? (texture.Width / 2,

texture.Height / 2);

scale = 1.0f;
rotation = 0.0f;

sourceRectangle = new Rectangle (0,
0,
texture.Width,

texture.Height) ;

public Sprite (Game game,

{
spriteBatch =

Texture2D texture,

Rectangle sourceRectangle)

(SpriteBatch)game.Services.GetService (typeof (SpriteBatch));

this.texture = texture;
this.sourceRectangle =

position = Vector2.Zero;
velocity = Vector2.Zero;

sourceRectangle;

center = new Vector2 (sourceRectangle.Width / 2,

sourceRectangle.Height / 2);
width = sourceRectangle.Width;
height = sourceRectangle.Height;
scale = 1.0f;
rotation = 0.0f;

public abstract void Update (GameTime gameTime) ;
public abstract void Draw (GameTime gameTime) ;

public Rectangle Bounds
{
get
{
return new Rectangle (
(int)position.X,
(int)position.Y,
width,

height) ;

}

public virtual Texture2D Texture

{

get { return texture; }

}

public virtual Vector? Position

{
get { return position; }
set { position = value; }

}

public virtual Vector2 Velocity
{

get { return velocity; }

}

public virtual Vector2 Center

{

get { return center; }

}

public Vector2 Origin
{

get { return position + center; }

}

public virtual float Scale
{

get { return scale; }

}

public virtual float Rotation

{

get { return rotation; }

}

public int Width

{
get { return width; }

}

public int Height

{
get { return height; }

}

The AnimatedSprite class inherited from the Sprite class so it has to provide Update and
Draw methods. Since the Sprite class was a DrawableGameComponent before there were calls to
base.Update and base.Draw. They just needed to be removed from those classes and were the only
changes to that class. This was a relatively short class so I will give you the code for the entire class.
You will notice that the methods are overrides of the abstract methods. This is that they can have
overrides in classes that inherit from AnimatedSprite.

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using New2DRPG.CoreComponents;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

namespace New2DRPG.SpriteClasses

{
public enum AnimationKey { Up, Down, Left, Right };

public class AnimatedSprite : Sprite
{

List<Animation> animations = new List<Animation>();
AnimationKey currentAnimation;

bool isAnimating;

float speed = 3.0f;

public AnimatedSprite (Game game, Texture2D texture,
animations)

base (game, texture)

spriteBatch = Gamel.TileSpriteBatch;

this.animations = animations;
currentAnimation = AnimationKey.Down;
isAnimating = false;

List<Animation>

width = animations|[(int)currentAnimation] .FrameWidth;
height = animations|[(int)currentAnimation].FrameHeight;

center = new Vector? (width / 2, height / 2);

public float Speed

{
get { return speed; }
set

{
speed = MathHelper.Clamp(value, 0.1f, 10f);

public bool IsAnimating
{

get { return isAnimating; }
set { isAnimating = wvalue; }

public AnimationKey CurrentAnimation

{

get { return currentAnimation; }
set { currentAnimation = wvalue; }

public Rectangle CurrentRectangle

{
get
{

return animations]| (int)currentAnimation].CurrentFrameRect;

}

public override void Update (GameTime gameTime)
{
if (isAnimating)
animations|[(int)currentAnimation] .Update (gameTime) ;

public override void Draw (GameTime gameTime)
{
spriteBatch.Begin (SpriteBlendMode.AlphaBlend,
SpriteSortMode.Deferred,
SaveStateMode.None,
Gamel .Camera.TransformMatrix) ;

spriteBatch.Draw (
texture,
Position,
animations|[(int) currentAnimation] .CurrentFrameRect,
Color.White) ;

spriteBatch.End();

public void LockToMap ()
{

if (position.X < 0)
position.X = 0;
if (position.Y < 0)
position.Y = 0;
if (position.X + width > TileMapComponent.WidthInPixels)
position.X = TileMapComponent.WidthInPixels - width;
if (position.Y + height > TileMapComponent.HeightInPixels)
position.Y = TileMapComponent.HeightInPixels - height;

The ItemSprite class had to be changed as well because it inherited directly from the Sprite

class. For that class there was a call to base.Draw for drawing the items and there was no Update
method. The update method doesn't do anything but it is there in case it maybe needed down the road.
It was a short class so the code for the entire class follows

using
using
using
using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.Text;
New2DRPG.CoreComponents;
Microsoft.Xna.Framework.Graphics;
Microsoft.Xna.Framework;

namespace New2DRPG.SpriteClasses

{

class ItemSprite : Sprite

{

Rectangle location;

public ItemSprite (Game game, Texture2D texture, Vector? position)
base (game, texture)
{
spriteBatch = Gamel.TileSpriteBatch;
this.position = new Vector2 (
position.X * TileEngine.TileWidth,
position.Y * TileEngine.TileHeight);
location = new Rectangle((int)this.position.X,
(int) this.position.Y,
TileEngine.TileWidth,
TileEngine.TileHeight);
}

public override void Update (GameTime gameTime)
{
}

public override void Draw (GameTime gameTime)
{
spriteBatch.Begin (SpriteRBlendMode.AlphaBlend,
SpriteSortMode.Deferred,
SaveStateMode.None,
Gamel .Camera.TransformMatrix) ;
spriteBatch.Draw (texture,
location,
Color.White) ;
spriteBatch.End () ;

The NPC and Monster classes did not have to be modified because they inherited from the
AnimatedSprite class. The Chest class has an ItemSprite field and didn't inherit from ItemSprite so
it did not have to be changed either. Those are all of the changes that were made to those classes. You
should be able to compile and run your game like normal.

The first manager class that [will make is a class that manages the items and chests in the game.
I decided to merge them because they are so closely interlinked. To do that I made a class called
ItemManager that will handle all of the items in the game and the chests in the game. It will trigger an
event when the player collides with a chest. The first thing to do is to add the ItemClasses folder add a
new class called ItemManager. There is a lot of code in the ItemManager class. To make adding the
code for the class easier you can copy and paste the code for the CreateChests, Readltems,
ReadWeapon, ReadArmor, and ReadShield methods from the Gamel class to the temManager
class. I've included those methods in the code for the new class. You will have to change this in the
CreateChests method to Game when creating the chests.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Xml;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Content;

namespace New2DRPG.ItemClasses

{
public class ChestEventArgs : EventArgs

{
Chest chest;

public ChestEventArgs (Chest chest)

{
Chest = chest;

}

public Chest Chest
{

get { return chest; }
private set { chest = value; }

public class ItemManager : DrawableGameComponent
{
public event ChestCollisionEventHandler ChestCollision;
public delegate void ChestCollisionEventHandler (object sender,
ChestEventArgs e);

List<Chest> chests = new List<Chest>();

Dictionary<string, Weapon> weapons = new Dictionary<string, Weapon>();
Dictionary<string, Armor> armors = new Dictionary<string, Armor>();
Dictionary<string, Shield> shields = new Dictionary<string, Shield>();
Random random = new Random () ;

ContentManager Content;

public ChestManager (Game game)
base (game)
{
Content =
(ContentManager) Game.Services.GetService (typeof (ContentManager)) ;
Initialize();

public override void Initialize()

{

base.Initialize();

}

protected override void LoadContent ()

{
ReadItems (@"Content\Items\items.its");
CreateChests () ;

public override void Update (GameTime gameTime)
{
foreach (Chest chest in chests)
chest.Update (gameTime) ;

public override void Draw (GameTime gameTime)
{
foreach (Chest chest in chests)
chest.Draw (gameTime) ;

}

public void CheckChestCollision(Vector? origin)
{
for (int 1 = 0; 1 < chests.Count; 1i++)
{
float distance = Vector2.Distance (
chests[i].0rigin,
origin);

if (distance < Chest.CollisionRadius)
{
if (ChestCollision != null)
{
ChestEventArgs e =
chests.RemoveAt (i) ;
ChestCollision(this, e);

new ChestEventArgs (chests[i]);

}

private void CreateChests()
{
Chest tempChest;

for (int i = 0; 1 < 2; i++)
{
tempChest = new Chest (
Game,
Content.Load<Texture2D> (@"Items\chest"),
new Vector2 (random.Next (3, 3 + 5), random.Next (3, 3 + 5)),
random.Next (100),
random.Next (100, 200),
null);
chests.Add (tempChest) ;
}

List<Baseltem> items = new List<Baseltem>();

items.Add (weapons|["dagger"]) ;
items.Add (armors["leather armor"]);

tempChest = new Chest (
Game,
Content.Load<Texture2D> (Q@"Items\chest"),
new Vector? (random.Next (5, 11), random.Next (5, 11)),
random.Next (100),
random.Next (100, 200),
items) ;

chests.Add (tempChest) ;

List<Baseltem> items2 = new List<Baseltem>();
items2.Add (shields["buckler"]);

}

tempChest = new Chest (
Game,
Content.Load<Texture2D> (Q@"Items\chest"),
new Vector?2 (random.Next (5, 11), random.Next (5,
items?2) ;

chests.Add (tempChest) ;

private void ReadItems (string filename)

{

}

XmlDocument xmlDoc = new XmlDocument () ;
xmlDoc.Load (filename) ;

XmlNode root = xmlDoc.FirstChild;

weapons.Clear () ;
armors.Clear();
shields.Clear();

foreach (XmlNode node in root.ChildNodes)
{
if (node.Name == "Weapons")
foreach (XmlNode wpn in node.ChildNodes)
ReadWeapon (wpn) ;
if (node.Name == "Armors")
foreach (XmlNode arm in node.ChildNodes)
ReadArmor (arm) ;
if (node.Name == "Shields")
foreach (XmlNode sld in node.ChildNodes)
ReadShield(sld) ;

private void ReadWeapon (XmlNode wpn)

{

string name;

int price;

int weight;
ItemSize size;
Hands hands;

int attackValue;
int attackBonus;

XmlNode node = wpn.FirstChild;
if (node.Name != "Name")

throw new Exception("Illegal file format!");
name = node.Attributes[0].Value;

node = node.NextSibling;

if (node.Name != "Price")
throw new Exception("Illegal file format!");
price = int.Parse(node.Attributes[0].Value);

node = node.NextSibling;
if (node.Name != "Weight")

throw new Exception("Illegal file format!");
weight = int.Parse(node.Attributes[0].Value);

11)),

node = node.NextSibling;

if (node.Name != "Size")
throw new Exception("Illegal file format!");
size = (ItemSize)Enum.Parse (typeof (ItemSize),

node.Attributes[0] .Value) ;

node = node.NextSibling;

if (node.Name != "Hands")
throw new Exception("Illegal file format!");
hands = (Hands)Enum.Parse (typeof (Hands), node.Attributes[0].Value);

node = node.NextSibling;

if (node.Name != "Attack")

throw new Exception("Illegal file format!");
attackValue = int.Parse (node.Attributes[0].Value);
attackBonus = int.Parse(node.Attributes([1l].Value);

Weapon weapon = new Weapon (
name,
price,
weight,
size,
hands,
attackvalue,
attackBonus) ;
weapons.Add (name, weapon) ;

private void ReadArmor (XmlNode arm)
{

string name;

int price;

int weight;

ITtemSize size;

int defenseValue;

int defenseBonus;

XmlNode node = arm.FirstChild;

if (node.Name != "Name")
throw new Exception("Illegal file format!");
name = node.Attributes[0].Value;

node = node.NextSibling;

if (node.Name != "Price™)
throw new Exception("Illegal file format!");
price = int.Parse(node.Attributes([0].Value);

node = node.NextSibling;
if (node.Name != "Weight")

throw new Exception("Illegal file format!");
weight = int.Parse(node.Attributes[0].Value);

node = node.NextSibling;

if (node.Name != "Size")
throw new Exception("Illegal file format!");
size = (ItemSize)Enum.Parse (typeof (ItemSize),

node.Attributes[0] .Value) ;

node = node.NextSibling;

if (node.Name != "Defense")
throw new Exception("Illegal file format!");

defenseValue = int.Parse (node.Attributes[0].Value);
defenseBonus = int.Parse(node.Attributes[1l].Value);
Armor armr = new Armor (

name,

price,

weight,

size,

defenseValue,

defenseBonus) ;
armors.Add (name, armr);

}

private void ReadShield (XmlNode sld)
{

string name;

int price;

int weight;

ItemSize size;

int defenseValue;

int defenseBonus;

XmlNode node = sld.FirstChild;
if (node.Name != "Name")

throw new Exception("Illegal file format!");
name = node.Attributes[0].Value;

node = node.NextSibling;

if (node.Name != "Price")
throw new Exception("Illegal file format!");
price = int.Parse(node.Attributes([0].Value);

node = node.NextSibling;

if (node.Name != "Weight")
throw new Exception("Illegal file format!");
weight = int.Parse(node.Attributes[0].Value);

node = node.NextSibling;

if (node.Name != "Size")
throw new Exception("Illegal file format!");
size = (ItemSize)Enum.Parse (typeof (ItemSize),

node.Attributes[0] .Value) ;

node = node.NextSibling;

if (node.Name != "Defense")

throw new Exception("Illegal file format!");
defenseValue = int.Parse(node.Attributes[0].Value);
defenseBonus = int.Parse (node.Attributes[1l].Value);

Shield shld = new Shield(
name,
price,
weight,
size,
defenseValue,
defenseBonus) ;

shields.Add (name, shld);

There are using statements for the XNA and XML classes that are needed in the class. You will
see that there is a second class inside this class called ChestEventArgs that derives from the
EventArgs class. I will be using this class for creating the event that will be fired when the player
collides with a chest. It has a field, constructor, and property. The field will be the chest that the player
collides with and the constructor will set the field. The get part returns the chest and the set part is
private and is used to set the field.

I inherited the class from DrawableGameComponent so that it will have both Update and
Draw methods as well as other methods available to game components. There is an event called
ChestCollision and a delegate for that event in the class. Events are good ways of having
communication between different classes. This event will be triggered when the player collides with a
chest and the event is subscribed to. If the event isn't subscribed to nothing will happen. The delegate
describes the method that will be called when the event is triggered. There are fields from the Gamel
class. They are for all of the chests in the game and fields for the weapons, armor, and shields. There is
also a Random field for generating random numbers and a ContentManager field for loading in
content.

The constructor for the class retrieves the current ContentManager object and calls the
Initialize method. The Initiliaze method automatically calls the LoadContent method with the call to
base.Initialize. The LoadContent method then calls the ReadItems method to read in the items for
the game and then CreateChests to create the chests for the game. The Update and Draw methods just
loop through all of the chests and call their Update and Draw methods.

There is one method that you have seen before but not quite. That is the CheckChestCollision
method. This method is called to check to see if the player has collided with a chest. If the player has
collided with a chest event handler code will be triggered, if the event is subscribed to. The method
takes a Vector2 as a parameter that is the origin of the player's sprite.

The method loops through all of the chests in the game. It gets the distance between the origin
of the player and the origin of the chest and compares it to the collision radius of the chest class. What
happens if that condition is true is I check to see if the event has been subscribed to by checking to see
if it is not null. I then create an instance of ChestEventArgs to hold the chest that triggered to
collision. Like before I remove the chest for the List<Chest> so it is no longer part of the game and
then I call the event handler passing in the sender, which is the current instance, and the instance of the
ChestEventArgs.

Before getting to implementing this in the game, I want to make one quick change to the
PlayerComponent. What [want to do is to add a get only property to get the origin of the player. Add
the following property to the PlayerComponent class.

public Vector2 Origin
{

get { return sprite.Origin; }

}

Now it is time to implement this manager in the game. The first thing you can do is go to the
fields of the class. Find the chests, weapons, armors, and shields fields. Replace them with the
following field.

ItemManager itemManager;

This will break a few things but don't worry about it. You can remove the CreateChests,
Readltems, ReadWeapon, ReadArmor, and ReadShield methods from the Gamel class. You don't
need them any more. The next thing do is change the LoadContent method to the following.

protected override void LoadContent ()

{
spriteBatch = new SpriteBatch (GraphicsDevice);
tileSpriteBatch = new SpriteBatch (GraphicsDevice);

Services.AddService (typeof (SpriteBatch), spriteBatch);
Services.AddService (typeof (ContentManager), Content);

dialog = new DialogComponent (this);
Components.Add (dialog) ;

normalFont = Content.Load<SpriteFont>("normal");
LoadGameScreens () ;

CreateAnimations () ;

spriteTextures = new TextureZD[assetNames.Length];
for (int 1 = 0; i1 < assetNames.Length; i++)
spriteTextures[i] = Content.Load<Texture2D> (assetNames[i]);

script = ReadScript (@"Content\scriptl.script");

LoadPlayerSprites();
CreatePlayerAnimations() ;

CreateNPCS () ;
CreateMonsters() ;
CreateltemManager () ;

Instead of the LoadConent method calling the CreateChests method, it now calls a method
called CreateltemManager. The CreateltemManager method creates the ItemManager instance and
wires the ChestCollision event handler. This is the code for the CreateltemManager method and the
event handler.

private void CreateltemManager ()

{
itemManager = new ItemManager (this);
itemManager.ChestCollision +=
new ItemManager.ChestCollisionEventHandler (chestManager ChestCollision);

void chestManager ChestCollision(object sender, ChestEventArgs e)

{

activeScreen.Enabled = false;

activeScreen = treasureScreen;
treasureScreen.Show (e.Chest) ;

The code for the event handler is created the same was as the code wiring events in a Windows
forms application. You type += to associate an event handler and then you can press tab twice to
generate a method stub for the event handler. The code for the event handler should look very familiar.
All it does is hide the active screen, set the active screen to be the treasure screen and call the show
method passing in the chest that was passed to the ChestEventArgs when the event was fired.

What you need to do now is change the HandlePlayerInput method. Before that method would
loop through all of the chests, call their Update methods, and check for collisions. You can now just
call the Update and CheckChestCollision methods passing in the GameTime parameter and the
origin of the player's sprite respectively. This is the new code for the HandlePlayerInput method.

private void HandlePlayerInput (GameTime gameTime)

{
player.Update (gameTime) ;

if (!'inDialoq)
{
foreach (NPC npc in npcs)
npc.Update (gameTime) ;

if (CheckAttackRadius (gameTime))
return;

itemManager.Update (gameTime) ;
itemManager.CheckChestCollision(player.Origin) ;

if (CheckKey (Keys.Enter) || CheckButton (Buttons.B))
CheckSpeakingRadius () ;
}
if (!'inDialoq)

HandlePlayerMovement () ;

The last change will be in the Draw method of the Gamel class. Instead of looping through the
List<Chest> to draw the chests you can now just call the Draw method of the temManager class to
draw all of the chests. This is the new Draw method.

protected override void Draw (GameTime gameTime)
{
GraphicsDevice.Clear (Color.CornflowerBlue) ;
spriteBatch.Begin (SpriteRlendMode.AlphaBlend) ;
base.Draw (gameTime) ;
if (activeScreen == actionScreen || activeScreen == quitActionScreen)
{
player.Draw (gameTime) ;
foreach (NPC sprite in npcs)
sprite.Draw (gameTime) ;
foreach (Monster monster in monsters)
{
if (!monster.InCombat)
monster.Draw (gameTime) ;

itemManager.Draw (gameTime) ;

}
spriteBatch.End() ;

Well, that is it for this tutorial. I had thought about adding in components for managing the
NPCs in the game and the monsters in the game in this tutorial. That ended up being a bigger task than
I had originally thought it would be. I will be getting to that in the next tutorial more than likely.

I will be working on these tutorials and I will be adding in more and more functionality to the
game that you would expect to find in a role playing game. I encourage you to keep either visiting my

site http://xnagpa.net or my blog, XNA Game Programming Adventures Blog for the latest news on my
tutorials.

http://xnagpa.net/blog/
http://xnagpa.net/

