XNA 4.0 RPG Tutorials
Part 7

Animated Sprite

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I will be adding in an animated sprite for the player to control. For that you will of
course need sprites. I will be using the sprites I used from my XNA 3.x RPG series to use for this
tutorial. You can download the sprites from http://xnagpa.net/xna4/downloads/playersprites.zip.

After you have downloaded and decompressed the sprites you will need to add them to the content
project. Right click the EyesOfTheDragonContent project, select Add and then New Folder. Call this
new folder PlayerSprites. Right click the PlayerSprites folder, select Add and then Existing Item.
Navigate to where you decompressed the sprites. Select all eight sprites to add them. The names are of
the format genderclass.png. Where gender is the gender of the character and class is the class of the
character. So, malewizard is the sprite for a male wizard.

It will be best to have the sprite classes part of the XRpgLibrary project. There will be more than just
these animated sprites so I added in a folder for all sprite class. Right click the XRpgLibrary project,
select Add and then New Folder. Name this new folder SpriteClasses.

Animation in computer games is done much like it was done when the first animated cartoons came
out. It is the process of repeatedly drawing one image after another to give the illusion that the image is
changing. When done at an appropriate speed the person seeing the illusion will see the image
changing. If you look at the image below the blue squares show the different images, or frames. There
are three images in each row. The artist created the images so that you go from the first frame to the
second frame to the third and then back to the first. That is the way I will be implementing the
animation of the sprite. I will have a frame rate, the number of frames that will be drawn each second.
I've found that five frames per second is a reasonable rate. I will be creating a class for this type of
animation.

Right click the GameComponents folder in your game, select Add and then Class. Name this new
class Animation. This is the code for the Animation class.


http://xnagpa.net/xnarpg4tutorials.html
http://xnagpa.net/xna4/downloads/playersprites.zip




There is a using statement for the XNA Framework because this class uses the Rectangle class. There
is an enumeration called AnimationKey. It describes the different types of animations the sprite has. It
can be down, up, left and right. You could also have animations for moving on the diagonals. The sprite




I used doesn't have these animations. This class implements the ICloneable interface. The reason is
you may have multiple sprites in the game that have the same lay out as the player's sprite. It is better
to store the animations in a master list of animations and return copies of them. This is a class so if you
pass just the instance and you make changes it will affect the original.

There are quite a few fields in this class. The first one, frames, is an array of rectangles for the source
rectangles of the animation. If you look back at the image all of the animations for one direction are in
the same row. The reason will become clear when I get to the constructor. The next field is an integer
and holds the number of frames to animate per second. The next two fields are of type TimeSpan.
They hold the length of each frame of the animation and the time since the last animation started. Using
the TimeSpan structure gives you a finer degree of control over the animations than using a double or
floating point value. The next field, currentFrame, is the index of the current animation in the array of
rectangles. The last two fields, frameWidth and frameHeight, hold the height and width of the

frames. The one downfall of this method is that all of the frames must have the same width and height.
There is another method that you could use to animate the sprites but I believe this is the best approach.

There are several properties in this class to expose the fields they represent. The first one is
FramesPerSecond and it is used to get and set the number of frames the sprite will animate in one
second. The get part is trivial, it just returns the value in the framesPerSecond field. The set part is a
little more interesting. It does a little validation on the values passed in. The first check is to make sure
that the value is not less than one. If it was you would get some pretty bizarre results. It also makes sure
that the frame rate is not greater than sixty. This value is actually pretty high. Checking for a value of
ten would probably be a better idea. After validating the values it sets the frameLength field. What is
important here is you want to make sure you cast the framesPerSecond field as a double when you do
the division. If you don't then integer division will be preformed and you will get either one or zero,
depending on if framesPerSecond was one or not. You will often need to know what the current
rectangle of the animation is so there is a property CurrentFrameRect to retrieve that. You will not
only want to be able to get what the current frame is but also set it. You will again have to make sure
that the value passed in is valid. I did that using the MathHelper.Clamp method which makes sure that
the value is with in the minimum and maximum values, inclusive, passed in. There are also properties
that get the width and height of the frames, FrameWidth and FrameHeight respectively.

There are two constructors for this class, a public one and a private one. The public takes as parameters
the number of frames for the animation, the width of each frame, the height of each frame, the X offset
of the frame and the Y offset of the frame. The last two's purpose probably isn't obvious. If you go back
to the image of the sprite sheet above you will see that it is split up into rows and columns. The first
row of animations begins at coordinates (0, 0). The second row of animations begins at coordinates (0,
32). The third and forth at (0, 64) and (0, 96) respectively. As you can see as you move down in rows
the Y value changes. This is the Y offset value. You could also have had the animations in two rows and
two columns. In this case you would also have had an X offset. Later I will get to having more than just
the walking animation and the X offset will be useful.

The constructor then sets the frames, frameWidth, and frameHeight first. Then, in a for loop, it
creates each of the rectangles to describe the frames for the animation. This is where the X and Y
offsets become important. When you create the first animation you will be passing in the values 3, 32,
32, 0, and 0. For the second you will be passing in 3, 32, 32, 0, and 32. In the for loop to find the X
coordinate in the sprite sheet for the rectangle you take the X offset and add the width of the frame
times the frame counter, which is i the loop index. In this case since all of the animations or on the
same row you can just use the Y offset value. The Width and Height values are set using the



frameWidth and frameHeight values passed in. I then use the FramesPerSecond field to set the
number of frames for the sprite to be 5. I then call the Reset method of the class which sets the
animation in its starting position.

The second private constructor is used when I implement the ICloneable interface. This constructor
takes an Animation object as its parameter. The reason is because as I mentioned above about the
frames field being marked readonly. This constructor sets the frames field of the new animation to the
frames field of the old animation. It then sets the FramesPerSecond to 5 like the other constructor.

There are two methods, Update and Reset, that are for controlling the animation of the sprite. The third
method, Clone, implements the ICloneable interface. The Update method takes a GameTime
parameter. This parameter measures how much time has elapsed since the last call to Update in the
Gamel class. This is used to determine when it is time to move to the next frame of the animation.
What I do is add the ElapsedGameTime property of the GameTime parameter to frameTimer. This is
used to determine when to move to the next frame. It is time to move to the next frame when
frameTimer is greater than or equal to frameLength so there is an if statement that checks for that. If
it is you want to reset frameTimer to the zero position and move to the next frame. There is an nice
mathematical formula next to calculate which frame to move to. In our case we have three frames that
are at index 0, 1, and 2. If you add 1 to that you will have the values 1, 2, and 3. You then get the
remainder of dividing those by the number of frames. Those values will be 1, 2, and 0. So if you are on
frame 0 you will move to frame 1, from frame 1 to frame 2, and from frame 2 back to frame. The Reset
method is very simple. It sets the current frame to be 0 and then sets the time back to 0 as well.

The last method in this class is the Clone method. This method is from the ICloneable interface. This
method returns a copy of the current animation. The first step is to create a new Animation object
using the private constructor, passing in the current Animation object. The next step is to set the
frameWidth and frameHeight fields. I call the Reset method to reset the Animation to the first frame.
I then return the new Animation as an object. The Clone method always returns an object as its return
value. When you use the Clone method of the Animation class you will have to cast the return value to
be of type Animation.

The next class I'm going to add is a class for an animated sprite. Right click the SpriteClasses folder,
select Add and then Class. Name this new class AnimatedSprite. This is the code for that class.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

using XRpglibrary.TileEngine;

namespace XRpgLibrary.SpriteClasses
{

public class AnimatedSprite

{

#region Field Region
Dictionary<AnimationKey, Animation> animations;
AnimationKey currentAnimation;

bool isAnimating;

Texture2D texture;






#endregion
#region Method Region

public void Update (GameTime gameTime)
{
if (isAnimating)
animations[currentAnimation] .Update (gameTime) ;

}

public void Draw (GameTime gameTime, SpriteBatch spriteBatch, Camera camera)
{
spriteBatch.Draw (

texture,

position - camera.Position,

animations[currentAnimation] .CurrentFrameRect,

Color.White) ;
}

public void LockToMap ()
{
position.X
position.Y

MathHelper.Clamp (position.X, 0, TileMap.WidthInPixels - Width);
MathHelper.Clamp (position.Y, 0, TileMap.HeightInPixels - Height) ;

}

#endregion

}

This is a little different from previous AnimatedSprite classes that I made but the core class is the
same. The difference is in the constructor of the class. There are using statements to bring a few classes
of the XNA Framework into scope as well as our XRpgLibrary.TileEngine name space.

There are a number of fields in this class. The first is a Dictionary<AnimationKey, Animation> to
hold the animations of the sprite. I used a dictionary because you can only have one entry per key and it
is easier than having to remember which animation was added when if you were to use a List<T>. The
currentAnimation field is for the current animation of the sprite. The bool field isAnimating is used
to tell if the sprite is currently animating so the animation should be updated in the Update method.
The texture field is for the sprite sheet. The next two field are Vector2 fields and are for the position
and velocity of the sprite. I will be controlling the speed the sprite moves across the screen like the
scrolling of the map. I will normalize the vector and then multiply it by a constant value, the speed
field that holds the speed the sprite moves.

There are properties to expose information about the sprite. CurrentAnimation is a get and set
property for the currentAnimation field. The IsAnimating property is also a get and set property and
is for the isAnimating field. You will often need to know the height and width of the sprite. The
Height and Width properties return the height and width of the current frame of the animation. The
Speed property is also get and set and exposes the speed field. The set part clamps the speed between 1
and 16 using MathHelper.Clamp. The Position property exposes the position field and is a read/write
property, get/set. The Velocity property exposed the velocity field. It is get/set as well. However, the set
part checks to see if the value passed in is Vector2.Zero because it normalizes the vector and you can't
normalize a vector that has zero length.

The constructor takes two parameters. A Texture2D for the sprite and a Dictionary<AnimationKey,
Animation> for the animations. You don't have to pass a clone of the animations to the constructor as it
will clone the animations passed in. The constructor sets the texture field to the texture passed in and
then creates a new Dictionary<AnimationKey, Animation>. Then in a for each look it loops through



all of the keys in the key collection of the dictionary passed in. Inside the loop it adds the key with a
clone of the animation to the dictionary in the class.

The Update takes the GameTime parameter to be able to update the animation. It checks to see if the
sprite is currently animating. If it is it calls the Update method of the current animation.

The Draw method takes three parameters. The GameTime parameter of our game's Draw method, a
SpriteBatch between calls to Begin and End, a Camera for the map. The reason is the sprite, the map,
and the camera are all related. In drawing the map you subtract the position of the camera. You will
also need to subtract it from any object on the map, including sprites. Things are going to get more than
a little complicated having to subtract the camera here and other things. I've got a good solution though.
To draw the sprite I use the overload that takes the texture for the sprite, a Vector2 for its position, a
source rectangle, and the tint color.

The LockToMap method is used to keep the sprite from going off the map. You need to clamp the X
coordinate between zero and the width of the map in pixels minus the width of the sprite. If you don't
subtract the width of the sprite it will move off the screen to the right. Similarly, you clamp the Y
coordinate between zero and the height of the map in pixels minus the height of the sprite.

For now I'm going to add a sprite to the game play screen. In the next tutorial I will move things around
a bit. The first step for adding the sprite to the GamePlayScreen will be to add a using statement for
the SpriteClasses name space of our XRpgLibrary. and add a field for the sprite in the Field region.

using XRpgLibrary.SpriteClasses;

AnimatedSprite sprite;

In the LoadContent method you load in a sprite sheet and construct the animations and add them to a
dictionary to pass to the constructor of the sprite. This is the new LoadContent method.

protected override void LoadContent ()

{
Texture2D spriteSheet = Game.Content.Load<Texture2D>(Q@"PlayerSprites\malefighter");
Dictionary<AnimationKey, Animation> animations = new Dictionary<AnimationKey, Animation>();

Animation animation = new Animation (3, 32, 32, 0, 0);
animations.Add (AnimationKey.Down, animation);

animation = new Animation (3, 32, 32, 0, 32);
animations.Add (AnimationKey.Left, animation);

animation = new Animation (3, 32, 32, 0, 64);
animations.Add (AnimationKey.Right, animation) ;

animation = new Animation (3, 32, 32, 0, 96);
animations.Add (AnimationKey.Up, animation);

sprite = new AnimatedSprite (spriteSheet, animations);
base.LoadContent () ;

Texture?2D tilesetTexture = Game.Content.Load<Texture2D>(Q"Tilesets\tilesetl");
Tileset tilesetl = new Tileset (tilesetTexture, 8, 8, 32, 32);

tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset2");
Tileset tileset?2 = new Tileset (tilesetTexture, 8, 8, 32, 32);

List<Tileset> tilesets = new List<Tileset>();



tilesets.Add (tilesetl) ;
tilesets.Add(tileset2) ;

MapLayer layer = new MapLayer (40, 40);

for (int y = 0; y < layer.Height; y++)

{
for (int x = 0; x < layer.Width

{ Tile tile = new Tile (0, 0);
layer.SetTile(x, y, tile);
}
MapLayer splatter = new MapLayer (40

Random random = new Random() ;

for (int i = 0; i < 80; 1i++)

{

int x = random.Next (0, 40);
int y = random.Next (0, 40);
int index = random.Next (2, 14);
Tile tile = new Tile(index, 0);

splatter.SetTile(x, y, tile);
}

splatter.SetTile (1, 0, new Tile (O,
splatter.SetTile (2, 0, new Tile (2,
splatter.SetTile (3, 0, new Tile (0,

List<MaplLayer> maplayers = new List<MapLayer>();

maplayers.Add (layer) ;
maplayers.Add (splatter) ;

;o oxt+)

, 40);

1))

’
’
’

map = new TileMap(tilesets, mapLayers);

The new code just loads in a texture. It then creates the animations. I chose the male fighter sprite sheet
for the sprite. To create the animations you need to know the offset values for X and Y. The X offsets
are the same as each animation is on a row of its own. The thing that changes is the Y offset. Since the
sprites are 32 pixels high the offsets will be multiples of 32. 0 times 32 for the top row, 1 times 32 for
the second, 2 times 32 for the third and 4 time 32 for the last. After creating the animations and loading

the sprite sheet I create the sprite.

In the Update method you will want to call the Update method of the sprite. In the Draw method you
will want to call the Draw method of the sprite. Change the Update and Draw methods in the

GamePlayScreen to the following.

public override void Update (GameTime gameTime)

{
player.Update (gameTime) ;
sprite.Update (gameTime) ;

base.Update (gameTime) ;

}

public override void Draw (GameTime gameTime)

{

GameRef.SpriteBatch.Begin (
SpriteSortMode.Immediate,
BlendState.AlphaBlend,
SamplerState.PointClamp,




null,
null,
null,
Matrix.Identity) ;

map.Draw (GameRef.SpriteBatch, player.Camera) ;
sprite.Draw (gameTime, GameRef.SpriteBatch, player.Camera) ;

base.Draw (gameTime) ;

GameRef.SpriteBatch.End () ;

The sprite isn't moving at the moment though. It just sits up in the top corner of the map. We want the
sprite to move not the camera but at the same time we want the player to be able to explore the map
with the camera. The way I'm going to implement it is to have two modes for the camera. In the one
mode the camera will follow the sprite. In the other the camera has free movement.

The first step is to update the Camera class. I ended up making quite a few changes to the Camera
class so I will give you the code for the entire class.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using XRpgLibrary.SpriteClasses;

namespace XRpgLibrary.TileEngine
{

public enum CameraMode { Free, Follow }

public class Camera
{

#region Field Region

Vector2 position;

float speed;

float zoom;

Rectangle viewportRectangle;
CameraMode mode;

#endregion
#region Property Region

public Vector2 Position
{
get { return position; }
private set { position = value; }

}

public float Speed
{
get { return speed; }
set
{
speed = (float)MathHelper.Clamp (speed, 1f, 16f);
}
}

public float Zoom






TileMap.HeightInPixels - viewportRectangle.Height) ;
}

public void LockToSprite (AnimatedSprite sprite)
{
position.X = sprite.Position.X + sprite.Width / 2
- (viewportRectangle.Width / 2);
position.Y = sprite.Position.Y + sprite.Height / 2
- (viewportRectangle.Height / 2);
LockCamera () ;

}

public void ToggleCameraMode ()
{

if (mode == CameraMode.Follow)
mode = CameraMode.Free;
else if (mode == CameraMode.Free)
mode = CameraMode.Follow;
}
#endregion

}

I add in a using statement to bring the SpriteClasses name space into scope. I also added in a enum
called CameraMode that has two values: Free and Follow. I went this route rather than using a bool as
the bool could get confusing. The Free value allows for free movement and the Follow value has the
camera follow the player's sprite. I add a field, mode, that holds the mode of the camera. There is also a
read only property, CameraMode, that exposes the field's value. The constructors both set the mode
field to Follow initially.

I also made many changes to the Update method. The first is at the start I check to see if the field
mode is set to Follow. If it is the player's sprite is controlling the camera and you don't want free
movement so exit the method. I added in support for the Xbox 360 controller for free movement as
well. Cameras are usually controlled with the right thumb stick so I add in checks for the right thumb
stick in the direction if the arrow keys. Since I use an or in the condition either the keyboard or the
thumb stick will control movement. If both are down the camera behaves the same way as if either are
down. I also moved the code for updating the camera's position and locking the camera inside the if
that checks for motion. I did that because if there is no motion there is no need to update the position
and lock the camera if needed.

I also added in a public method LockToSprite that will snap the camera to the sprite. The method takes
an AnimatedSprite as a parameter. The camera is tied to the position of the sprite. The camera's X
coordinate is found by taking the X position of the sprite, adding half the width of the sprite and
subtracting half the width of the view port. What this does is have the map not scroll horizontally until
the center of the sprite is past the center of the view port. The camera's Y coordinate is found by taking
the Y position of the sprite, adding half the height of the sprite and subtracting half the height of the
view port. It then calls LockCamera to keep the map from scrolling off the view port.

There is one last method, ToggleCameraMode. This method just moves from one camera mode to
another. If the mode of the camera was Free it is set to Follow and if it was Follow it is set to Free.

The last thing is to implement the movement in the GamePlayScreen. I'm also going to add toggling of
the view mode of the camera. The sprite will be controlled using the W, A, S, and D keys or left thumb
stick of the controller. Pressing the C key or left thumb stick will snap the camera to the sprite. Finally,
pressing the F key or right thumb stick toggles the camera mode. Change the Update method of the



GamePlayScreen to the following.




You want the sprite to move at a uniform speed so I set up a Vector2 to hold the motion of the sprite so
it can be normalized and multiplied by the constant speed. There is an if-else-if statement that checks if
the W key is down, or the right thumb stick in the up direction. The else if checks for the S key and the
right thumb stick in the down direction. I check for vertical motion before horizontal motion. The
reason is it looks better if the sprite is moving diagonally to use the left and right animations rather then
the up and down animations. If the sprite is moving up the Y component of the motion vector is set to
-1 and the current animation of the sprite to up. Similarly, for the down direction test the Y component
of the motion vector is set to 1 and the current animation is set to the down animation.

I didn't include the if-else-if for horizontal motion with the if-else-if for vertical motion to allow the
sprite to move diagonally. This will make our life a pain down the road but it is what players expect
now, free motion. The if-else-if works the same as before. The one for the A key and the left thumb
stick left sets the X component of the motion vector to -1 and the animation to the left animation. For D
and left thumb stick right, set the X component of the motion vector to 1 and the animation to right.

The next if statement checks to see if there is motion to process. If there is, I set the IsAnimating
property to true so the sprite will animate. I then normalize the vector to have motion uniform and
update the sprite's position using the normalized motion vector and multiplying it by the sprite's speed.
I then call the LockToMap method of the sprite to make sure it doesn't travel off the map. If the
camera is in follow mode you also want to call the LockToSprite method of the camera passing in the
sprite. If there was no motion then IsAnimating is set to false so the sprite will no longer animate.

The next if statement checks to see if the F key or the right thumb stick have been released since the
last frame. If it has I call the ToggleCameraMode method to switch the mode of the camera. If the
mode is now the follow mode you want to lock the camera to the sprite.

The last if checks to see if the mode of the camera is not follow as there is no need to snap to the sprite
as the camera is already locked to the sprite. In that if I check to see if the C key or the left thumb stick
have been been released since the last frame. If they have I call the LockToSprite method of the
camera to snap the camera to the sprite's position.

That seems a lot to digest in one tutorial. Things are coming together but there is still more work to be
done. I definitely think that is more than enough for this tutorial. I'd like to try and keep them to a

reasonable length so that you don't have too much to digest at once. I encourage you to visit the news
page of my site, XNA Game Programming Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon


http://xnagpa.net/news.html
http://xnagpa.net/news.html

