XNA 4.0 RPG Tutorials
Part 18B

Finding Loot Part 2

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

This is part B of tutorial 18. I was working on adding chests and keys to the editor and being able to
read in chests at run time. At the end of the last tutorial | had add in new items to FormMain in the
designer but I haven't added in the code to handle them. Right click FormMain in the editor and select
View Code. This is the code for FormMain.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using System.IO;

using RpgLibrary;
using RpgLibrary.CharacterClasses;
using RpgLibrary.ItemClasses;

namespace RpgEditor

{
public partial class FormMain : Form
{

#region Field Region

RolePlayingGame rolePlayingGame;
FormClasses frmClasses;
FormArmor frmArmor;

FormShield frmShield;

FormWeapon frmWeapon;

FormKey frmKey;

FormChest frmChest;

static string gamePath = "";
static string classPath = "";
static string itemPath = "";
static string chestPath = "";

static string keyPath = "";
#endregion

#region Property Region
public static string GamePath

{
get { return gamePath; }

}

http://xnagpa.net/xnarpg4tutorials.html

classesToolStripMenultem.Enabled = true;

itemsToolStripMenultem.Enabled = true;

keysToolStripMenultem.Enabled = true;

chestsToolStripMenultem.Enabled = true;
}

#endregion

}

Quite a few new additions to the code of FormMain. I added in fields for FormKey and FormChest. I
also static fields for the path to keys and chests. The fields are keyPath and chestPath. The properties
are KeyPath and ChestPath. The properties, like the other static properties, are read only.

What is new in the constructor is that I wire event handlers for Click events for the two new menu
items, like the other menu items. In the event handler for the new game I create paths for keyPath and
chestPath like the other paths. Keys and chests reside in their own directories. I also create the new
directories like the other paths. I also enable the two new menu items. The event handler for the Click
event for saving a game calls two static methods that I haven't written yet on FormDetails called
WriteChestData and WriteKeyData. As you can guess they will write out chest and key data.

In the event handlers for the Click event of the new menu items I first check to see if the form for that
menu item is null. If it is null then I create a new form and set its MdiParent property to be the current
form. I then call the Show and BringToFront methods to display the forms and bring them to the front.

Since the directory structure for a game has changed in the OpenGame method I check to see if the
directories pointed to by keyPath and chestPath don't exist. If they don't exists then I create them. I
then call the ReadKeyData and ReadChestData methods of FormDetails that I also haven't written
yet and will get to soon.

The last change is in the PrepareForms method. I check to see if the forms are null. If they are null I
create new instances and set their MdiParent properties to this. I also call their FillListBox methods to
fill them with the appropriate items.

I need to update the code for FormDetails. I have to add the write and read methods for writing and
reading chests and keys. Right click FormDetails and select View Code to view the code. Add the
following methods.

public static void WriteKeyData ()
{

foreach (string s in ItemManager.KeyData.Keys)

{
XnaSerializer.Serialize<KeyData> (
FormMain.KeyPath + @"\" + s + ".xml",
ItemManager.KeyDatal[s]);

}

public static void WriteChestData ()
{
foreach (string s in ItemManager.ChestData.Keys)
{
XnaSerializer.Serialize<ChestData> (
FormMain.ChestPath + @"\" + s + ".xml",
ItemManager.ChestDatal[s]);

public static void ReadKeyData ()
{

string[] fileNames = Directory.GetFiles (FormMain.KeyPath, "*.xml");

foreach (string s in fileNames)

{
KeyData keyData = XnaSerializer.Deserialize<KeyData>(s):;
itemManager.KeyData.Add (keyData.Name, keyData);

}

public static void ReadChestData ()
{

string[] fileNames = Directory.GetFiles (FormMain.ChestPath, "*.xml");

foreach (string s in fileNames)

{
ChestData chestData = XnaSerializer.Deserialize<ChestData>(s);
itemManager.ChestData.Add (chestData.Name, chestData);

The code is similar to the other writing and reading code. For writing in a foreach loop I loop through
all of the keys in the ItemManager for that type of data. I then call the Serialize method of the
XnaSerializer class with the right data type, path to the file, and the actual item to write. To create the
path you take the path to that type of object and append a \ the name of the item and .xml for the
extension. To read in the items you first need to get all of the items of that type in the directory. You use
the GetFiles method of the Directory class to call all of the files with an xml extension. In a foreach
loop I loop through all of the file names. I then call the Deserialize method of the XnaSerilializer class
with the proper data type and the file name storing the object in a variable. I then add the object to the
ItemManager passing in the name of the object for the key and the actual object for the value.

Right click the RpgEditor and select Set As StartUp Project if the editor isn't already the start up
project. Build and run to launch the editor. Once you've done that select the Open menu item and
navigate to your game data from tutorial 14. I'm going to add a couple keys and chests to the editor.
Add the following keys and chests then save the game.

Keys
Key Name Key Type
Rusty Key
Golden Key Golden Key
Chests
Name Difficulty | Locked Key Key Keys Trapped Trap Min Max Item
Level Name Type Required Name Gold | Gold Collection
Rusty Chest Normal Yes Rusty Key 1 No 100 150
Gold Chest Normal Yes Golden Key | Golden Key 1 No 200 250
Big Gold Chest | Normal Yes Golden Key | Golden Key 2 No 500 750
Plain Chest Easy Yes 0 No 10 50
Broken Crate | Normal No 0 No 5 10

The next step will be to get a chest we created with the editor into the game. The first step will be to
add the game data to the EyesOfTheDragonContent project. The easiest way will be to drag the

Game folder from windows explorer onto the EyesOfTheDragonContent project. Open a windows
explorer window so that Visual Studio is visible below it and browse to where your Game directory
can be found as seen below. Sorry it isn't all that clear. Now, drag the Game folder onto the
EyesOfTheDragonContent project.

k- [l ve DMeicd Cull Delag Toeds ik 1ldn
o= = S - -] P resa N
i =
o
! sttt s [E] . ¢ dain st G R s b L Tl L awain s Bl 1%
= KL el
b ! ranzn v houdeinlbray = Searc wiik - Em Mowolder
[ren
H u ¢ bk sz
A g e viar
- B LoskEor
3 Uzl G R LH
A v Fae
nEre
Poge
L] RIS
n
dlitwan,
3
NI
o s
&M -
L STE -

L ——
J= ik

Fakier Hamz o

..-o;:o
N
R
x .
ER:
:
P h

Fakicr Mame
B LR Ry ST

You should now have a Game folder in your EyesOfTheDragonContent project as seen in the next
image. Right click the EyesOfTheDragon project and select Set As StartUp Project to make your
game the start up project. You will need to add a reference to the EyesOfTheDragonContent project
for your RpgLibrary to compile the XML files into XNB files that can be read using the Content
Pipeline. Right click the EyesOfTheDragonContent project and select Add Reference. From the
Projects tab select RpgLibrary.

4 T, EyesOfTheDragonContent (Content)
» [References
» [Backgrounds
- [Fonts
» L3 Game
» [GUI
» 1 ObjectSprites
- [PlayerSprites
» [Tilesets

The last thing [want to do is show how easy it is to read in a ChestData object using the Content
Pipeline. Change the CreateWorld method of the CharacterGeneratorScreen to the following.

private void CreateWorld()

{

Texture2D tilesetTexture = Game.Content.Load<Texture2D>(Q"Tilesets\tilesetl");

As you can see I replaced the code where I created a ChestData object by hand with a call to Load of
the ContentManager of our Game class. I passed in the Plain Chest that I created in the editor. We

went through a little work to get there but it is well worth it in the end. Most classes that you create can
be serialized using the IntermediateSerializer and then read in using the Content Pipeline at run time
with out having to create a custom Content Pipeline extension.

I'm going to end this tutorial here. The plan was to show how easy it is to read in our custom content at
run time using the Content Pipeline. I encourage you to visit the news page of my site, XNA Game
Programming Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

