
XNA 4.0 RPG Tutorials

Part 22

Reading Data

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I'm going to work on reading data into the game and expand a few things. We have all of
those wonderful manager classes in the RpgLibrary but I decided against using them. I instead added
a class to the EyesOfTheDragon project to manage all data in the game called DataManager. Right
click the EyesOfTheDragon project, select Add and then Class. Name this new class DataManager.
The code for that class follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Content;

using RpgLibrary.CharacterClasses;
using RpgLibrary.ItemClasses;
using RpgLibrary.SkillClasses;
using RpgLibrary.SpellClasses;
using RpgLibrary.TalentClasses;
using RpgLibrary.TrapClasses;

namespace EyesOfTheDragon.Components
{
 static class DataManager
 {
 #region Field Region

 static Dictionary<string, ArmorData> armor = new Dictionary<string,ArmorData>();
 static Dictionary<string, WeaponData> weapons = new Dictionary<string,WeaponData>();
 static Dictionary<string, ShieldData> shields = new Dictionary<string,ShieldData>();

 static Dictionary<string, KeyData> keys = new Dictionary<string, KeyData>();
 static Dictionary<string, ChestData> chests = new Dictionary<string, ChestData>();

 static Dictionary<string, EntityData> entities = new Dictionary<string,EntityData>();

 static Dictionary<string, SkillData> skills = new Dictionary<string, SkillData>();

 #endregion

 #region Property Region

 public static Dictionary<string, ArmorData> ArmorData
 {
 get { return armor; }
 }

http://xnagpa.net/xnarpg4tutorials.html

 public static Dictionary<string, WeaponData> WeaponData
 {
 get { return weapons; }
 }

 public static Dictionary<string, ShieldData> ShieldData
 {
 get { return shields; }
 }

 public static Dictionary<string, EntityData> EntityData
 {
 get { return entities; }
 }

 public static Dictionary<string, ChestData> ChestData
 {
 get { return chests; }
 }

 public static Dictionary<string, KeyData> KeyData
 {
 get { return keys; }
 }

 public static Dictionary<string, SkillData> SkillData
 {
 get { return skills; }
 }

 #endregion

 #region Constructor Region

 #endregion

 #region Method Region

 public static void ReadEntityData(ContentManager Content)
 {
 string[] filenames = Directory.GetFiles(@"Content\Game\Classes", "*.xnb");

 foreach (string name in filenames)
 {
 string filename = @"Game\Classes\" + Path.GetFileNameWithoutExtension(name);
 EntityData data = Content.Load<EntityData>(filename);
 EntityData.Add(data.EntityName, data);
 }
 }

 public static void ReadArmorData(ContentManager Content)
 {
 string[] filenames = Directory.GetFiles(@"Content\Game\Items\Armor", "*.xnb");

 foreach (string name in filenames)
 {
 string filename = @"Game\Items\Armor\" + Path.GetFileNameWithoutExtension(name);
 ArmorData data = Content.Load<ArmorData>(filename);
 ArmorData.Add(data.Name, data);
 }
 }

 public static void ReadWeaponData(ContentManager Content)
 {
 string[] filenames = Directory.GetFiles(@"Content\Game\Items\Weapon", "*.xnb");

 foreach (string name in filenames)
 {
 string filename = @"Game\Items\Weapon\" + Path.GetFileNameWithoutExtension(name);

 WeaponData data = Content.Load<WeaponData>(filename);
 WeaponData.Add(data.Name, data);
 }
 }

 public static void ReadShieldData(ContentManager Content)
 {
 string[] filenames = Directory.GetFiles(@"Content\Game\Items\Shield", "*.xnb");

 foreach (string name in filenames)
 {
 string filename = @"Game\Items\Shield\" + Path.GetFileNameWithoutExtension(name);
 ShieldData data = Content.Load<ShieldData>(filename);
 ShieldData.Add(data.Name, data);
 }
 }

 public static void ReadKeyData(ContentManager Content)
 {
 string[] filenames = Directory.GetFiles(@"Content\Game\Keys", "*.xnb");

 foreach (string name in filenames)
 {
 string filename = @"Game\Keys\" + Path.GetFileNameWithoutExtension(name);
 KeyData data = Content.Load<KeyData>(filename);
 KeyData.Add(data.Name, data);
 }
 }

 public static void ReadChestData(ContentManager Content)
 {
 string[] filenames = Directory.GetFiles(@"Content\Game\Chests", "*.xnb");

 foreach (string name in filenames)
 {
 string filename = @"Game\Chests\" + Path.GetFileNameWithoutExtension(name);
 ChestData data = Content.Load<ChestData>(filename);
 ChestData.Add(data.Name, data);
 }
 }

 public static void ReadSkillData(ContentManager Content)
 {
 string[] filenames = Directory.GetFiles(@"Content\Skills", "*.xnb");

 foreach (string name in filenames)
 {
 string filename = @"Game\Skills\" + Path.GetFileNameWithoutExtension(name);
 SkillData data = Content.Load<SkillData>(filename);
 SkillData.Add(data.Name, data);
 }
 }

 #endregion

 #region Virtual Method region
 #endregion
 }
}

There is a lot of code there but most of it is the same with just a few minor differences. First off, this is
a static class. When you make a class static it is created the first time it is referenced, you don't need to
call its constructor to create it. You can provide a static constructor for a static class but I instead
created the instances of the fields explicitly.

I added in a using statement for the System.IO name space to bring a few classes into scope for

manipulating files and paths. I also added a using statement for a couple XNA framework name spaces
and for many of the RpgLibrary name spaces as well.

There are a number of Dictionary<string, T> fields and properties where T is the type of data
associated with the field or property. ArmorData works with armor for example. The fields are private
and the properties are public. The properties are also read only, or get only. There are also a number of
methods ReadT(ContentManager Content) where T is again a type of data. I need the
ContentManager associated with the game to read in the data as it has been compiled by the Content
Pipeline.

Each of the ReadT methods works the same way. I first get all of the files in a specific directory with
an xnb extension, the extension given to content when it is processed by the Content Pipeline, that is
read into a local variable filenames. In a foreach loop I loop through of the file names. I then create a
string that is the same as the asset name given to the file when it is processed by the Content Pipeline.
I then use the Load method of the ContentManager to load the asset into the variable data. The data
variable is then added to the appropriate Dictionary<string, T> where the string is the name of the
data and T is the actual data.

Reading in the data in the game is relatively painless. First, make sure you have a using statement for
the Components name space of EyesOfTheDragon. Then in the LoadContent method of the Game1
class call each of the Read methods. Add the following using statement to the Game1 class and change
the LoadContent method to the following.

using EyesOfTheDragon.Components;

protected override void LoadContent()
{
 SpriteBatch = new SpriteBatch(GraphicsDevice);

 DataManager.ReadEntityData(Content);

 DataManager.ReadArmorData(Content);
 DataManager.ReadShieldData(Content);
 DataManager.ReadWeaponData(Content);

 DataManager.ReadChestData(Content);
 DataManager.ReadKeyData(Content);

 DataManager.ReadSkillData(Content);
}

Now we have access to all of the data we created in the game. There is one small drawback to the way
things work right now. Every time you add new items using the editor you need to add it to the
EyesOfTheDragonContent project. The easiest way to do that is to just drag the Game folder you
data lives in from a Windows Explorer window onto the EyesOfTheDragonContent project in Visual
Studio.

Now that we have all of our data it is time to update a few things. The first thing I want to update is the
Player class. Instead of having an AnimatedSprite field, I want to have a Character field. This will
break a few things but now is the best time to tackle this. Change the code of the Player class of the
EyesOfTheDragon project to the following.

using System;
using System.Collections.Generic;
using System.Linq;

using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using XRpgLibrary;
using XRpgLibrary.TileEngine;
using XRpgLibrary.SpriteClasses;
using XRpgLibrary.CharacterClasses;

namespace EyesOfTheDragon.Components
{
 public class Player
 {
 #region Field Region

 Camera camera;
 Game1 gameRef;
 readonly Character character;

 #endregion

 #region Property Region

 public Camera Camera
 {
 get { return camera; }
 set { camera = value; }
 }

 public AnimatedSprite Sprite
 {
 get { return character.Sprite; }
 }

 public Character Character
 {
 get { return character; }
 }

 #endregion

 #region Constructor Region

 public Player(Game game, Character character)
 {
 gameRef = (Game1)game;
 camera = new Camera(gameRef.ScreenRectangle);
 this.character = character;
 }

 #endregion

 #region Method Region

 public void Update(GameTime gameTime)
 {
 camera.Update(gameTime);
 Sprite.Update(gameTime);

 if (InputHandler.KeyReleased(Keys.PageUp) ||
 InputHandler.ButtonReleased(Buttons.LeftShoulder, PlayerIndex.One))
 {
 camera.ZoomIn();
 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(Sprite);
 }
 else if (InputHandler.KeyReleased(Keys.PageDown) ||
 InputHandler.ButtonReleased(Buttons.RightShoulder, PlayerIndex.One))

 {
 camera.ZoomOut();
 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(Sprite);
 }

 Vector2 motion = new Vector2();

 if (InputHandler.KeyDown(Keys.W) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickUp, PlayerIndex.One))
 {
 Sprite.CurrentAnimation = AnimationKey.Up;
 motion.Y = -1;
 }
 else if (InputHandler.KeyDown(Keys.S) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickDown, PlayerIndex.One))
 {
 Sprite.CurrentAnimation = AnimationKey.Down;
 motion.Y = 1;
 }

 if (InputHandler.KeyDown(Keys.A) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickLeft, PlayerIndex.One))
 {
 Sprite.CurrentAnimation = AnimationKey.Left;
 motion.X = -1;
 }
 else if (InputHandler.KeyDown(Keys.D) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickRight, PlayerIndex.One))
 {
 Sprite.CurrentAnimation = AnimationKey.Right;
 motion.X = 1;
 }

 if (motion != Vector2.Zero)
 {
 Sprite.IsAnimating = true;
 motion.Normalize();

 Sprite.Position += motion * Sprite.Speed;
 Sprite.LockToMap();

 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(Sprite);
 }
 else
 {
 Sprite.IsAnimating = false;
 }

 if (InputHandler.KeyReleased(Keys.F) ||
 InputHandler.ButtonReleased(Buttons.RightStick, PlayerIndex.One))
 {
 camera.ToggleCameraMode();
 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(Sprite);
 }

 if (camera.CameraMode != CameraMode.Follow)
 {
 if (InputHandler.KeyReleased(Keys.C) ||
 InputHandler.ButtonReleased(Buttons.LeftStick, PlayerIndex.One))
 {
 camera.LockToSprite(Sprite);
 }
 }

 }

 public void Draw(GameTime gameTime, SpriteBatch spriteBatch)

 {
 character.Draw(gameTime, spriteBatch);
 }

 #endregion
 }
}

What has changed here is first I added in a using statement for the CharacterClasses name space from
the XRpgLibrary. I then replaced the AnimatedSprite field with a Character field character. In the
Sprite property instead of returning the AnimatedSprite field I return the Sprite property of the
character field. I change the constructor to take a Character argument rather than an AnimatedSprite
argument. I set the character field to the character parameter. In the Update method I replace the
sprite field with the Sprite property. In the Draw method I call the Draw method of the character
field.

That is going to break the LoadGameScreen and the CharacterGeneratorScreen because when they
created the Player component they were passing in an AnimatedSprite and now it is expecting a
Character. I will fix the LoadGameScreen first. What you will want to do is to create an Entity in the
CreatePlayer method and then a Character object. When you create the Player object pass in the
Character object. Change the CreatePlayer method of the LoadGameScreen class to the following.

private void CreatePlayer()
{
 Dictionary<AnimationKey, Animation> animations = new Dictionary<AnimationKey, Animation>();

 Animation animation = new Animation(3, 32, 32, 0, 0);
 animations.Add(AnimationKey.Down, animation);

 animation = new Animation(3, 32, 32, 0, 32);
 animations.Add(AnimationKey.Left, animation);

 animation = new Animation(3, 32, 32, 0, 64);
 animations.Add(AnimationKey.Right, animation);

 animation = new Animation(3, 32, 32, 0, 96);
 animations.Add(AnimationKey.Up, animation);

 AnimatedSprite sprite = new AnimatedSprite(
 GameRef.Content.Load<Texture2D>(@"PlayerSprites\malefighter"),
 animations);

 Entity entity = new Entity(
 "Encelwyn",
 DataManager.EntityData["Fighter"],
 EntityGender.Male,
 EntityType.Character);

 Character character = new Character(entity, sprite);
 GamePlayScreen.Player = new Player(GameRef, character);
}

When I created the Entity I used some magic values. For the name I used, Encelwyn, a name I use a
lot in games. I also specified that the character will be a fighter and a male. You do want the Entity to
be a Character though so we are fine there. Eventually we will be writing out the player and reading
the player back in. It does make handling creating the entity in the CharacterGeneratorScreen is a
little more problematic. You would like selections on the CharacterGeneratorScreen to reflect the
data that you have created. The name of the character will be the hardest to deal with as you may want
the player to be able to choose a name for their character. It can be done easier on the Xbox than in
Windows as you can bring up the keyboard on the Xbox. In Windows you will want to create a text box

to enter data into. For the name we will just use a fixed value for now. Filling the class selector with the
available classes won't be that hard. Loading the sprites also won't be that difficult because of the way I
named the sprites.

Let's get to the changes. The first change is you want to remove the initialization of the classItems field
in the CharacterGeneratorScreen. Change that field to the following and add a using statement for
the CharacterClasses name space of the RpgLibrary and XRpgLibrary.

using RpgLibrary.CharacterClasses;
using XrpgLibrary.CharacterClasses;

string[] classItems;

Now, in the LoadContent method you will want create the array of strings for classItems and fill it.
You will do that in the LoadContent method. Change the LoadContent method to the following.

protected override void LoadContent()
{
 base.LoadContent();

 classItems = new string[DataManager.EntityData.Count];

 int counter = 0;

 foreach (string className in DataManager.EntityData.Keys)
 {
 classItems[counter] = className;
 counter++;
 }

 LoadImages();
 CreateControls();
 containers = Game.Content.Load<Texture2D>(@"ObjectSprites\containers");
}

What the new code does is create a new array that is the size of the Count property of EntityData in
the DataManager. You create the CharacterGeneratorScreen in the constructor of Game1 before the
LoadContent method is called. How can you use those values here? The reason is that because you
created the instance of CharacterGeneratorScreen in the constructor of Game1 its LoadContent
method isn't called until its Initialize method is called. That will be when it is added to the list of
components in the game by the state manager. If you set a break point at the call to base.LoadContent
in Visual Studio you will see that the method is not called until after the player selects the menu item
for creating a new game.

What the new code is doing is creating a new string array the size of the Count property of the
EntityData property of the DataManager class. There is then a variable I called counter set to zero
initially that will hold what index I am on. In a foreach loop I loop through all of the keys in the Keys
collection of EntityData. I assign the classItems array value at index counter to the current key and
then I increment the counter variable.

The last thing to do is to update the CreatePlayer method of CharacterGeneratorScreen. Like in the
LoadGameScreen class you want to create a Character object and pass it to the call to the constructor
of the Player class. The difference is that you will use the values from the screen. Change the
CreatePlayer method of the CharacterGeneratorScreen to the following.

private void CreatePlayer()
{
 Dictionary<AnimationKey, Animation> animations = new Dictionary<AnimationKey, Animation>();

 Animation animation = new Animation(3, 32, 32, 0, 0);
 animations.Add(AnimationKey.Down, animation);

 animation = new Animation(3, 32, 32, 0, 32);
 animations.Add(AnimationKey.Left, animation);

 animation = new Animation(3, 32, 32, 0, 64);
 animations.Add(AnimationKey.Right, animation);

 animation = new Animation(3, 32, 32, 0, 96);
 animations.Add(AnimationKey.Up, animation);

 AnimatedSprite sprite = new AnimatedSprite(
 characterImages[genderSelector.SelectedIndex, classSelector.SelectedIndex],
 animations);
 EntityGender gender = EntityGender.Male;

 if (genderSelector.SelectedIndex == 1)
 gender = EntityGender.Female;

 Entity entity = new Entity(
 "Pat",
 DataManager.EntityData[classSelector.SelectedItem],
 gender,
 EntityType.Character);

 Character character = new Character(entity, sprite);

 GamePlayScreen.Player = new Player(GameRef, character);
}

What the new code does is first create a local variable of type EntityGender and assign it to be Male
by default. Then in an if statement I check to see if the SelectedIndex of the genderSelector is 1. If it
is, I set the local variable gender to Female. I then create a new Entity passing in, Pat, for the name,
the EntityData selected in the classSelectror, the gender variable, and Character for the EntityType.
I then create a new Character and using it in the call to the constructor of the Player class. I know Pat
isn't very RPGish but it will work for now. A better solution will be after the player has confirmed their
choices of gender and class to move to a screen they can select a name from.

I'm going to end this tutorial here. The plan was to add in some basic functionality for reading data into
the game. I encourage you to visit the news page of my site, XNA Game Programming Adventures , for
the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

