
XNA 4.0 RPG Tutorials

Part 24

Level Editor Continued

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In tutorial 23 I got the basics of a level editor up and running. You could create new levels that included
the map. You could add tilesets to the map as well as layers to the map. In this tutorial I'm going to do a
little more work on the editor.

The first thing I want to do is to modify the design of the Tiles tab. I want to display the tile the mouse
is over. The first step is to modify the properties of lbTileset. I want to make it shorter. Set the
following properties

lbTileset
Property Value
Size 180, 212

Below that I dragged on a Label and a Text Box. Set these properties for those two controls

Label
Property Value
(Name) lblCursor
AutoSize FALSE
Location 8, 567
Size 180, 23
Text Map Location
TextAlign TopCenter

Text Box
Property Value
(Name) tbMapLocation
Enabled FALSE
Location 8, 590
Size 180, 22

http://xnagpa.net/xnarpg4tutorials.html

You can now set the Text property of tbMapLocation in the Logic method. Update the Logic method
to the following.

private void Logic()
{
 if (layers.Count == 0)
 return;

 Vector2 position = camera.Position;

 if (trackMouse)
 {
 if (mouse.X < Engine.TileWidth)
 position.X -= Engine.TileWidth;

 if (mouse.X > mapDisplay.Width - Engine.TileWidth)
 position.X += Engine.TileWidth;

 if (mouse.Y < Engine.TileHeight)
 position.Y -= Engine.TileHeight;

 if (mouse.Y > mapDisplay.Height - Engine.TileHeight)
 position.Y += Engine.TileHeight;

 camera.Position = position;
 camera.LockCamera();

 position.X = mouse.X + camera.Position.X;
 position.Y = mouse.Y + camera.Position.Y;

 Point tile = Engine.VectorToCell(position);

 tbMapLocation.Text =
 "(" + tile.X.ToString() + ", " + tile.Y.ToString() + ")";

 if (isMouseDown)
 {
 if (rbDraw.Checked)
 {
 layers[clbLayers.SelectedIndex].SetTile(
 tile.X,
 tile.Y,
 (int)nudCurrentTile.Value,
 lbTileset.SelectedIndex);
 }
 if (rbErase.Checked)
 {
 layers[clbLayers.SelectedIndex].SetTile(
 tile.X,
 tile.Y,
 -1,
 -1);
 }
 }
 }

}

All I did was create a string using the X and Y properties of the Point called tile that is the current tile
the mouse is in. You could set the TextAlign property of tbMapLocation to center the text if you want.

Choosing the tile you want to draw using the Numeric Up Down can be a real pain in the you know
what. What would be nicer is if you could also click on the Picture Box that holds the tileset image and
select that tile. Part of the problem with that is that the tileset image in the Picture Box has been scaled.
Unless the tileset is the same size as the Picture Box you need to do a little math. Update the code for

the Load event of the form to wire an event handler for the MouseDown event for pbTilesetPreview
and add in this handler to the Tile Tab Event Handler. I also set the TextAlign property for
tbMapLocation to center the text. You want MouseDown because it uses MouseEventArgs that has
information about the mouse unlike the Click event.

void FormMain_Load(object sender, EventArgs e)
{
 lbTileset.SelectedIndexChanged += new EventHandler(lbTileset_SelectedIndexChanged);
 nudCurrentTile.ValueChanged += new EventHandler(nudCurrentTile_ValueChanged);

 Rectangle viewPort = new Rectangle(0, 0, mapDisplay.Width, mapDisplay.Height);
 camera = new Camera(viewPort);

 engine = new Engine(32, 32);

 controlTimer.Tick += new EventHandler(controlTimer_Tick);
 controlTimer.Enabled = true;
 controlTimer.Interval = 200;

 tbMapLocation.TextAlign = HorizontalAlignment.Center;
 pbTilesetPreview.MouseDown += new MouseEventHandler(pbTilesetPreview_MouseDown);
}

void pbTilesetPreview_MouseDown(object sender, MouseEventArgs e)
{
 if (lbTileset.Items.Count == 0)
 return;

 if (e.Button != System.Windows.Forms.MouseButtons.Left)
 return;

 int index = lbTileset.SelectedIndex;

 float xScale = (float)tileSetImages[index].Width /
 pbTilesetPreview.Width;

 float yScale = (float)tileSetImages[index].Height /
 pbTilesetPreview.Height;

 Point previewPoint = new Point(e.X, e.Y);

 Point tilesetPoint = new Point(
 (int)(previewPoint.X * xScale),
 (int)(previewPoint.Y * yScale));

 Point tile = new Point(
 tilesetPoint.X / tileSets[index].TileWidth,
 tilesetPoint.Y / tileSets[index].TileHeight);

 nudCurrentTile.Value = tile.Y * tileSets[index].TilesWide + tile.X;
}

Not much new in the event handler for the form loading. I just wire the handler and set a property for
tbMapLocation. It is in the handler for MouseDown of pbTilesetPreview where the interesting code
is. First, I check to see that there is a tileset loading comparing the Count property of the Items
collection of lbTileset to zero. If there is no tileset I exit the method. Also, if the left mouse button did
not trigger the event I exit the method. I capture the SelectedIndex property of lbTileset because I
needed to use it a lot. As I mentioned if the size of the tileset image is not the size of the image of the
picture box there was scaling done. To get the scaling factor for the X coordinate, I take the Width of
the tileset, cast to a float, divided by the Width of the picture box. If you don't cast the width of the
tileset to a float first you will be doing integer division and you want the digits after the decimal place.
The scaling factor for the Y coordinate is done using the Height of the tileset and picture box. I then
get the location of the mouse as a Point using the X and Y properties of the MouseEventArgs. I then

get what that Point would be if scaled using xScale and yScale. To find which tile that point is in,
using X and Y coordinates, you do like you do in the Engine class to determine what cell a Vector2 is
in. You divide the X by the Width and the Y by the Height. Tiles are created going left to right first and
then top to bottom. To find the value of the tile in one dimension you take the Y coordinate, multiply it
by the number of tiles wide, and add the X coordinate. I set that value to the Value property of
nudCurrentTile. Since the ValueChanged event handler is wired for that, even if it is changed in the
program, the event handler will be triggered. That will fill the preview picture box with the right prieve
from the tileset.

If you start changing the size of the MapDisplay you may end up seeing the blue background, not what
is desired. You will want what is displayed to change with what is visible. To do that I'm going to
subscribe to the SizeChanged event of the MapDisplay. I will subscribe to that in the Load event of
the form. Modify the handler for that event to the following and add this handler to the Form Event
Handler region.

void FormMain_Load(object sender, EventArgs e)
{
 lbTileset.SelectedIndexChanged += new EventHandler(lbTileset_SelectedIndexChanged);
 nudCurrentTile.ValueChanged += new EventHandler(nudCurrentTile_ValueChanged);

 Rectangle viewPort = new Rectangle(0, 0, mapDisplay.Width, mapDisplay.Height);
 camera = new Camera(viewPort);

 engine = new Engine(32, 32);

 controlTimer.Tick += new EventHandler(controlTimer_Tick);
 controlTimer.Enabled = true;
 controlTimer.Interval = 200;

 tbMapLocation.TextAlign = HorizontalAlignment.Center;
 pbTilesetPreview.MouseDown += new MouseEventHandler(pbTilesetPreview_MouseDown);

 mapDisplay.SizeChanged += new EventHandler(mapDisplay_SizeChanged);
}

void mapDisplay_SizeChanged(object sender, EventArgs e)
{
 Rectangle viewPort = new Rectangle(0, 0, mapDisplay.Width, mapDisplay.Height);
 Vector2 cameraPosition = camera.Position;

 camera = new Camera(viewPort, cameraPosition);
 camera.LockCamera();

 mapDisplay.Invalidate();
}

What the event handler does is create a new camera and tell the map display to redraw itself. I create a
new rectangle the size of the map display. I then save the current position of the camera. I then create
the new camera passing in the new rectangle and the position of the old camera. I then call the
LockCamera method to lock the camera. Finally I call the Invalidate method to tell the MapDisplay
to refresh itself.

What I also want to do is add in a grid that can be toggled on and off as well as a cursor for the mouse.
If there is a map layer I will draw the currently selected tile under the image of the cursor as well. For
that you are going to require two images. One for the grid and one for the mouse cursor. You can
download them from http://xnagpa.net/xna4/downloads/mapimages.zip. Download the images and
extract them to a folder. Open that folder and drag the cursor.png and grid.png files onto the
XLevelEditorContent project. That was another reason for making a Windows Game compared to a

http://xnagpa.net/xna4/downloads/mapimages.zip

Windows Form Application. I had the content project available to add content to, like the image for the
grid and the image of the cursor. If you were able to create the Windows Form Application and have it
render successfully follow these steps. Right click the XLevelEditor project, select Add and then New
Folder. Name this new folder Content. Drag the two files above onto that folder. No matter which
approach you took in the properties set the Copy to Output Directory property to Copy Always.

Before I code the logic I want to add another menu item, a View menu item. Beside the &Key entry
add in an entry &View. Under that add an item &Display Grid. Set the Checked and CheckOnClick
properties for that menu item to True. I also dragged my &View menu item to be beside the &Level
item.

Before I get to drawing the grid and the cursor you need to load the images and you will need fields to
hold the images. Add these two fields and change the OnInitialize handler to the following.

Texture2D cursor;
Texture2D grid;

void mapDisplay_OnInitialize(object sender, EventArgs e)
{
 spriteBatch = new SpriteBatch(GraphicsDevice);

 mapDisplay.MouseEnter += new EventHandler(mapDisplay_MouseEnter);
 mapDisplay.MouseLeave += new EventHandler(mapDisplay_MouseLeave);
 mapDisplay.MouseMove += new MouseEventHandler(mapDisplay_MouseMove);
 mapDisplay.MouseDown += new MouseEventHandler(mapDisplay_MouseDown);
 mapDisplay.MouseUp += new MouseEventHandler(mapDisplay_MouseUp);

 try
 {
 using (Stream stream = new FileStream(@"Content\grid.png", FileMode.Open,
FileAccess.Read))
 {
 grid = Texture2D.FromStream(GraphicsDevice, stream);
 stream.Close();
 }

 using (Stream stream = new FileStream(@"Content\cursor.png", FileMode.Open,
FileAccess.Read))
 {
 cursor = Texture2D.FromStream(GraphicsDevice, stream);
 stream.Close();
 }
 }
 catch (Exception exc)
 {
 MessageBox.Show(exc.Message, "Error reading images");
 grid = null;
 cursor = null;
 }
}

The code in the handler for OnInitialize is contained in a try-catch block. When you are doing file IO
that could crash your application it is always a good idea to do it in a try-catch block to recover. Inside
using statements I create a new Stream for the image files in the \Content\ folder, that is why I had
you set the Copy to Output Directory property so they will be there. Inside the using statements I use
the FromStream method of the Texture2D class to read in the files. I then close the stream. It will
automatically be disposed when the block ends. If there is an exception I display the message in a

message box with a title. I also set both of the fields to be null. I will still have the editor work with out
the images but not draw them. That is much nicer than not having the editor work at all.

Drawing the grid and the mouse cursor and preview will be done in a method that I will call from the
Render method. Change the Render method to the following and add the method DrawDisplay.

private void Render()
{
 for (int i = 0; i < layers.Count; i++)
 {
 spriteBatch.Begin(
 SpriteSortMode.Deferred,
 BlendState.AlphaBlend,
 SamplerState.PointClamp,
 null,
 null,
 null,
 camera.Transformation);

 if (clbLayers.GetItemChecked(i))
 layers[i].Draw(spriteBatch, camera, tileSets);

 spriteBatch.End();
 }

 DrawDisplay();
}

private void DrawDisplay()
{
 if (map == null)
 return;

 Rectangle destination = new Rectangle(
 0,
 0,
 Engine.TileWidth,
 Engine.TileHeight);

 if (displayGridToolStripMenuItem.Checked)
 {
 int maxX = mapDisplay.Width / Engine.TileWidth + 1;
 int maxY = mapDisplay.Height / Engine.TileHeight + 1;

 spriteBatch.Begin();

 for (int y = 0; y < maxY; y++)
 {
 destination.Y = y * Engine.TileHeight;

 for (int x = 0; x < maxX; x++)
 {
 destination.X = x * Engine.TileWidth;

 spriteBatch.Draw(grid, destination, Color.White);
 }
 }

 spriteBatch.End();
 }

 spriteBatch.Begin();

 destination.X = mouse.X;
 destination.Y = mouse.Y;

 spriteBatch.Draw(

 tileSets[lbTileset.SelectedIndex].Texture,
 destination,
 tileSets[lbTileset.SelectedIndex].SourceRectangles[(int)nudCurrentTile.Value],
 Color.White);

 spriteBatch.Draw(cursor, destination, Color.White);

 spriteBatch.End();
}

The Render method just calls the DrawDisplay method after rendering the map. The DrawDisplay
method will exit if the map field is null and there is no map being drawn. It then creates a Rectangle
object, destination, that has the width and height from the Engine class. There is then an if statement
that checks the Checked property of the displayGridToolStripMenuItem. If it is I will draw the grid
over the map. I find out how many items to draw across by dividing the Width of the map display by
the Width of a tile on the screen and add 1. For the number to draw down I divide the Height of the
map display by the Height of a tile on the screen. I call Begin on spriteBatch and then there is a set of
nested loops much like when you draw a tile map. The out loop will loop through all of the rows and
the inner loop the columns. In the outer loop I set the Y property of destination and in the inner loop I
set the X property of destination just like when tiling. After the loops I call the End method of the
spriteBatch. In between calls to Begin and End I draw the preview tile and the cursor image. I set the
X and Y properties of destination to the X and Y properties of the mouse. For drawing the tile I get the
Texture2D using the tileSets field and the SelectedIndex property of lbTileset. To select the source
rectangle I again use the SelectedIndex property of lbTileset and the Value property, cast to an integer,
of nudCurrentTile. I then draw the cursor.

Bixel is a reader of my tutorials and an active member of my forum. He had a nice idea for not always
having to enter in values to the new level and new tileset forms. I'm going to take his suggestion and
add them in here. Right click FormNewLevel in the solution explorere and select View Code. Change
the constructor to the following and add the following method to the Constructor region.

public FormNewLevel()
{
 InitializeComponent();

 btnOK.Click += new EventHandler(btnOK_Click);
 btnCancel.Click += new EventHandler(btnCancel_Click);

 SetDefaultValues();
}

private void SetDefaultValues()
{
 tbLevelName.Text = "Starting Level";
 tbMapName.Text = "Village";
 mtbWidth.Text = "100";
 mtbHeight.Text = "100";
}

The new code just gives the controls on the form some starting values. I'm also going to change the and
design for FormNewTileset. You don't need to input the number of tiles wide and tiles high a tileset is.
You can calculate those values with the other values on the form. Right click FormNewTileset and
select View Designer to bring up design view of the form. While holding down <SHIFT> select the
Labels and Masked Text Boxes associated with tiles wide and tiles high and press the <Delete> key to
remove them. Move the buttons up a little and change the size of the form. My form appears on the
next page.

http://xnagpa.net/forum

That is going to break the code of the btnOK_Click method. I'm also going to set some default values
for the form as well. Right click FormNewTileset in the solution explorer and select View Code.
Change the code for that form to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using RpgLibrary.WorldClasses;

namespace XLevelEditor
{
 public partial class FormNewTileset : Form
 {
 #region Field Region

 bool okPressed;
 TilesetData tilesetData;

 #endregion

 #region Property Region

 public TilesetData TilesetData
 {
 get { return tilesetData; }
 }

 public bool OKPressed
 {
 get { return okPressed; }
 }

 #endregion

 #region Constructor Region

 public FormNewTileset()
 {
 InitializeComponent();

 btnSelectImage.Click += new EventHandler(btnSelectImage_Click);
 btnOK.Click += new EventHandler(btnOK_Click);
 btnCancel.Click += new EventHandler(btnCancel_Click);

 SetDefaultValues();
 }

 private void SetDefaultValues()
 {
 tbTilesetName.Text = "Village Tileset";
 mtbTileWidth.Text = "32";
 mtbTileHeight.Text = "32";
 }

 #endregion

 #region Button Event Handler Region

 void btnSelectImage_Click(object sender, EventArgs e)
 {
 OpenFileDialog ofDialog = new OpenFileDialog();
 ofDialog.Filter = "Image Files|*.BMP;*.GIF;*.JPG;*.TGA;*.PNG";
 ofDialog.CheckFileExists = true;
 ofDialog.CheckPathExists = true;
 ofDialog.Multiselect = false;

 DialogResult result = ofDialog.ShowDialog();

 if (result == DialogResult.OK)
 {
 tbTilesetImage.Text = ofDialog.FileName;
 }
 }

 void btnOK_Click(object sender, EventArgs e)
 {
 if (string.IsNullOrEmpty(tbTilesetName.Text))
 {
 MessageBox.Show("You must enter a name for the tileset.");
 return;
 }

 if (string.IsNullOrEmpty(tbTilesetImage.Text))
 {
 MessageBox.Show("You must select an image for the tileset.");
 return;
 }

 int tileWidth = 0;
 int tileHeight = 0;
 int tilesWide = 0;
 int tilesHigh = 0;

 if (!int.TryParse(mtbTileWidth.Text, out tileWidth))
 {
 MessageBox.Show("Tile width must be an integer value.");
 return;
 }
 else if (tileWidth < 1)
 {
 MessageBox.Show("Tile width must me greater than zero.");
 return;
 }

 if (!int.TryParse(mtbTileHeight.Text, out tileHeight))
 {
 MessageBox.Show("Tile height must be an integer value.");
 return;
 }
 else if (tileHeight < 1)
 {
 MessageBox.Show("Tile height must be greater than zero.");
 return;
 }

 Image tileSet = (Image)Bitmap.FromFile(tbTilesetImage.Text);

 tilesWide = tileSet.Width / tileWidth;
 tilesHigh = tileSet.Height / tileHeight;

 tilesetData = new TilesetData();

 tilesetData.TilesetName = tbTilesetName.Text;
 tilesetData.TilesetImageName = tbTilesetImage.Text;
 tilesetData.TileWidthInPixels = tileWidth;
 tilesetData.TileHeightInPixels = tileHeight;
 tilesetData.TilesWide = tilesWide;
 tilesetData.TilesHigh = tilesHigh;

 okPressed = true;
 this.Close();
 }

 void btnCancel_Click(object sender, EventArgs e)
 {
 okPressed = false;
 this.Close();
 }

 #endregion
 }
}

Like on the other form the constructor calls a method, SetDefaultValues, to set some values for the
form. That method sets the Text property of tbTilesetName to Village Tileset and the Text property of
mtbTileWidth and mtbTileHeight to 32. In the handler for the Click event of btnOK I removed the
code that checked the values of tiles wide and tiles high. After validating the form I read in the image
for the tile set using the FromFile method of the Bitmap class. I get tilesWide by dividing the Width
of the image by tileWidth. Similarly, for tilesHigh I divide the Height of the image by tileHeight. The
rest of the code is the same.

The next step will be writing out a level and reading it back in. To do that I'm going to add in a class
like I did to the other editor to serialize and deserialize the data classes. Right click the XLevelEditor
project select Add and then Class. Name this new class XnaSerializer. The code for that class follows
next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Xml;

using Microsoft.Xna.Framework.Content.Pipeline.Serialization.Intermediate;

namespace XLevelEditor
{
 static class XnaSerializer
 {
 public static void Serialize<T>(string filename, T data)
 {
 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;

 using (XmlWriter writer = XmlWriter.Create(filename, settings))
 {
 IntermediateSerializer.Serialize<T>(writer, data, null);
 }

 }

 public static T Deserialize<T>(string filename)
 {
 T data;

 using (FileStream stream = new FileStream(filename, FileMode.Open))
 {
 using (XmlReader reader = XmlReader.Create(stream))
 {
 data = IntermediateSerializer.Deserialize<T>(reader, null);
 }
 }

 return data;
 }
 }
}

The code is the same as before. There are generic methods for serializing and deserializing objects
using the IntermediateSerializer class. Since it is the same as before I'm not going to go into the code
here.

Before I get to saving maps I need to add a little logic into FormMain. I need to keep track of the file
names for the tileset images. To do that I'm going to add a List<TilesetData> that will hold the tilesets
that are added to a map. Add the following field to the Field region of FormMain and change the
handler for the Click event of the new tileset menu item to the following.

List<TilesetData> tileSetData = new List<TilesetData>();
void newTilesetToolStripMenuItem_Click(object sender, EventArgs e)
{
 using (FormNewTileset frmNewTileset = new FormNewTileset())
 {
 frmNewTileset.ShowDialog();

 if (frmNewTileset.OKPressed)
 {
 TilesetData data = frmNewTileset.TilesetData;

 try
 {
 GDIImage image = (GDIImage)GDIBitmap.FromFile(data.TilesetImageName);
 tileSetImages.Add(image);

 Stream stream = new FileStream(data.TilesetImageName, FileMode.Open,
FileAccess.Read);

 Texture2D texture = Texture2D.FromStream(GraphicsDevice, stream);

 Tileset tileset = new Tileset(
 texture,
 data.TilesWide,
 data.TilesHigh,
 data.TileWidthInPixels,
 data.TileHeightInPixels);

 tileSets.Add(tileset);
 tileSetData.Add(data);

 if (map != null)
 map.AddTileset(tileset);

 stream.Close();
 stream.Dispose();
 }
 catch (Exception ex)

 {
 MessageBox.Show("Error reading file.\n" + ex.Message, "Error reading image");
 return;
 }

 lbTileset.Items.Add(data.TilesetName);

 if (lbTileset.SelectedItem == null)
 lbTileset.SelectedIndex = 0;

 mapLayerToolStripMenuItem.Enabled = true;
 }
 }
}

All the new code does is create a new List<TilesetData> called tileSetData. In the handler for the
Click event of the new tileset menu item after I add the new tileset to tileSets I also add it to the new
field tileSetData.

I also want to add an overload of the SetTile method of MapLayerData that takes four parameters
instead of three. I will be passing in the X and Y coordinates of the tile as well as the index of the tile in
the tileset and the tileset. Add the following method to MapLayerData.

public void SetTile(int x, int y, int tileIndex, int tileSet)
{
 Layer[y * Width + x] = new Tile(tileIndex, tileSet);
}

It works the same as the other SetTile method but just creates a new Tile rather than assigning the Tile
that was passed in. Now I can handle writing out the data for a level. In the constructor for FormMain
you want to wire a handler for the Click event for saveLevelToolStripMenuItem. I added a new
region at the bottom of FormMain for menu items related to saving called Save Menu Item Event
Handler. Change the constructor for FormMain to the following and the following code to the new
region.

public FormMain()
{
 InitializeComponent();

 this.Load += new EventHandler(FormMain_Load);
 this.FormClosing += new FormClosingEventHandler(FormMain_FormClosing);

 tilesetToolStripMenuItem.Enabled = false;
 mapLayerToolStripMenuItem.Enabled = false;
 charactersToolStripMenuItem.Enabled = false;
 chestsToolStripMenuItem.Enabled = false;
 keysToolStripMenuItem.Enabled = false;

 newLevelToolStripMenuItem.Click += new EventHandler(newLevelToolStripMenuItem_Click);
 newTilesetToolStripMenuItem.Click += new EventHandler(newTilesetToolStripMenuItem_Click);
 newLayerToolStripMenuItem.Click += new EventHandler(newLayerToolStripMenuItem_Click);

 saveLevelToolStripMenuItem.Click += new EventHandler(saveLevelToolStripMenuItem_Click);

 mapDisplay.OnInitialize += new EventHandler(mapDisplay_OnInitialize);
 mapDisplay.OnDraw += new EventHandler(mapDisplay_OnDraw);
}
#region Save Menu Item Event Handler Region

void saveLevelToolStripMenuItem_Click(object sender, EventArgs e)
{
 if (map == null)
 return;

 List<MapLayerData> mapLayerData = new List<MapLayerData>();

 for (int i = 0; i < clbLayers.Items.Count; i++)
 {
 MapLayerData data = new MapLayerData(
 clbLayers.Items[i].ToString(),
 layers[i].Width,
 layers[i].Height);

 for (int y = 0; y < layers[i].Height; y++)
 for (int x = 0; x < layers[i].Width; x++)
 data.SetTile(
 x,
 y,
 layers[i].GetTile(x, y).TileIndex,
 layers[i].GetTile(x, y).Tileset);

 mapLayerData.Add(data);
 }

 MapData mapData = new MapData(levelData.MapName, tileSetData, mapLayerData);

 FolderBrowserDialog fbDialog = new FolderBrowserDialog();

 fbDialog.Description = "Select Game Folder";
 fbDialog.SelectedPath = Application.StartupPath;

 DialogResult result = fbDialog.ShowDialog();

 if (result == DialogResult.OK)
 {
 if (!File.Exists(fbDialog.SelectedPath + @"\Game.xml"))
 {
 MessageBox.Show("Game not found", "Error");
 return;
 }

 string LevelPath = Path.Combine(fbDialog.SelectedPath, @"Levels\");
 string MapPath = Path.Combine(LevelPath, @"Maps\");

 if (!Directory.Exists(LevelPath))
 Directory.CreateDirectory(LevelPath);

 if (!Directory.Exists(MapPath))
 Directory.CreateDirectory(MapPath);

 XnaSerializer.Serialize<LevelData>(LevelPath + levelData.LevelName + ".xml", levelData);
 XnaSerializer.Serialize<MapData>(MapPath + mapData.MapName + ".xml", mapData);
 }
}

#endregion

What the new method does is check to see if the field map is null. If there is no map there is nothing
really to save. I then create a List<MapLayerData> to hold the MapLayerData for each of the layers
in the map. There is then a for loop that loops through all of the items the Items of clbLayers. Inside
the loop I create a new MapLayerData object. I pass in the Items object for the associated index
converted to a string because the items are stored as objects, and the Width and Height of the
associated MapLayer. There is then a set of nest loops that will loop through all of the tiles in the layer.
I call the SetTile method the I just wrote for the MapLayerData class passing in the loop variables for
the x and y. For the TileIndex I use the TileIndex property after calling GetTile on the layer. You can
string things like this together to make life easier. For the Tileset I use the Tileset property from
GetTile on the the layer.

I then create a new instance of MapData use the MapName property of the LevelData object, the
List<TilesetData> I created earlier and the List<MapLayerData> that I just created.

To save the level I display a FolderBrowserDialog setting the Description property to Select Game
Folder and setting the SelectedPath to the start up path of the application. I capture the result of the
dialog in the variable result. If the result of the dialog was that the user pressed OK I check to see if the
Game.xml file exists. If it doesn't then I display an error message that the game wasn't found and exit
the method. I then create two paths. The first path is for the levels in the game, LevelPath, and the
second is for the maps in the game, MapPath. I then check to see if these paths exists. If they don't
exist I create them. I then call the Serialize method of the XnaSerializer class to serialize the level and
the map.

The next step is to reverse the process and read in a level and a map. In the constructor you will want to
wire an event handler for openLevelToolStripMenuItem. I added another region to deal with reading
in data. Change the constructor for FormMain to the following and add in the following region.

public FormMain()
{
 InitializeComponent();

 this.Load += new EventHandler(FormMain_Load);
 this.FormClosing += new FormClosingEventHandler(FormMain_FormClosing);

 tilesetToolStripMenuItem.Enabled = false;
 mapLayerToolStripMenuItem.Enabled = false;
 charactersToolStripMenuItem.Enabled = false;
 chestsToolStripMenuItem.Enabled = false;
 keysToolStripMenuItem.Enabled = false;

 newLevelToolStripMenuItem.Click += new EventHandler(newLevelToolStripMenuItem_Click);
 newTilesetToolStripMenuItem.Click += new EventHandler(newTilesetToolStripMenuItem_Click);
 newLayerToolStripMenuItem.Click += new EventHandler(newLayerToolStripMenuItem_Click);

 saveLevelToolStripMenuItem.Click += new EventHandler(saveLevelToolStripMenuItem_Click);

 openLevelToolStripMenuItem.Click += new EventHandler(openLevelToolStripMenuItem_Click);

 mapDisplay.OnInitialize += new EventHandler(mapDisplay_OnInitialize);
 mapDisplay.OnDraw += new EventHandler(mapDisplay_OnDraw);
}

void openLevelToolStripMenuItem_Click(object sender, EventArgs e)
{
 OpenFileDialog ofDialog = new OpenFileDialog();
 ofDialog.Filter = "Level Files (*.xml)|*.xml";
 ofDialog.CheckFileExists = true;
 ofDialog.CheckPathExists = true;

 DialogResult result = ofDialog.ShowDialog();

 if (result != DialogResult.OK)
 return;

 string path = Path.GetDirectoryName(ofDialog.FileName);

 LevelData newLevel = null;
 MapData mapData = null;

 try
 {
 newLevel = XnaSerializer.Deserialize<LevelData>(ofDialg.FileName);
 mapData = XnaSerializer.Deserialize<MapData>(path + @"\Maps\" + newLevel.MapName +
".xml");

 }
 catch (Exception exc)
 {
 MessageBox.Show(exc.Message, "Error reading level");
 return;
 }

 tileSetImages.Clear();
 tileSetData.Clear();
 tileSets.Clear();
 layers.Clear();
 lbTileset.Items.Clear();
 clbLayers.Items.Clear();

 foreach (TilesetData data in mapData.Tilesets)
 {
 Texture2D texture = null;

 tileSetData.Add(data);
 lbTileset.Items.Add(data.TilesetName);

 GDIImage image = (GDIImage)GDIBitmap.FromFile(data.TilesetImageName);
 tileSetImages.Add(image);

 using (Stream stream = new FileStream(data.TilesetImageName, FileMode.Open,
FileAccess.Read))
 {
 texture = Texture2D.FromStream(GraphicsDevice, stream);
 tileSets.Add(
 new Tileset(
 texture,
 data.TilesWide,
 data.TilesHigh,
 data.TileWidthInPixels,
 data.TileHeightInPixels));
 }
 }

 foreach (MapLayerData data in mapData.Layers)
 {
 clbLayers.Items.Add(data.MapLayerName, true);
 layers.Add(MapLayer.FromMapLayerData(data));
 }

 lbTileset.SelectedIndex = 0;
 clbLayers.SelectedIndex = 0;
 nudCurrentTile.Value = 0;

 map = new TileMap(tileSets, layers);

 tilesetToolStripMenuItem.Enabled = true;
 mapLayerToolStripMenuItem.Enabled = true;
 charactersToolStripMenuItem.Enabled = true;
 chestsToolStripMenuItem.Enabled = true;
 keysToolStripMenuItem.Enabled = true;
}

The code of interest is in the Click event handler for the level open menu item. I first create an object
of type OpenFileDialog to browse for levels. Levels were stored as .xml files so I set the Filter
property of ofDialog to display just .xml files. I set the CheckFileExists and CheckPathExists
properties to true. I then capture the result of the ShowDialog method. If the result was not the user
hitting the OK button I exit out of the method. To load all information about the level I need to capture
the directory the level sits in. Use the GetDirectoryName method of the Path class to do that. I then
create two local variables to read the data into. The variable newLevel will hold the LevelData and
mapData will hold the MapData. In a try-catch block I try and deserialize the level and the map. If an
exception was thrown I display it in a message box and exit the method. I then call the Clear method

on a lot of collections. The tileSetImages is the GDI+ images of the tilesets, tileSetData is the
TilesetData for the tilesets, tileSets is the actual tilesets, layers is the map layers, and the last two are
the List Box of tilesets and the Checked List Box for controlling map layers.

I guess I probably should have done the next part in a try-catch as well. In a foreach loop I loop through
all of the TilesetData objects in the Tilesets field of the MapData read in. Inside the loop is a
Texture2D to hold the texture for the tileset. I add the current TilesetData object to tileSetData and
the name of the tileset data to Items collection of lbTileset. This is where I probably should have added
a try-catch block. I use the FormFile method of the GDI+ Bitmap class to read in the image associated
with the TilesetData. I then add that image to tileSetImages. The next block of code is a using
statement where I create a Stream to the image for the tileset to read it in as a Texture2D. If you don't
use FileAccess.Read you can get an exception that the file is in use if you are running from the
debugger. I use the FromStream method to read the image in as a Texture2D and then add a new
Tileset to the tileSets field.

Now that I'm done with the tilesets its time to do the layers. There is a foreach loop that will loop
through all of the layers in mapData. I add the MapLayerName of the layer to the Items collection of
clbLayers passing in true as well so that it will be checked. I then use the FromMapLayerData
method of the MapLayer class to add a new layer to the layers field. I then set the SelectedIndex of
lbTileset and clbLayers to 0 as well as the Value property of nudCurrentTile. I then create a new
TileMap object using the tileSets and layers fields. The last thing I do is set the Enabled property of
the other menu items to true.

I think I'm going to end this tutorial here. I've added in more functionality to the level editor, being able
to select tiles more easily, and write and reading in maps. I encourage you to visit the news page of my
site, XNA Game Programming Adventures , for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

